Synthesis 2022; 54(07): 1671-1683
DOI: 10.1055/a-1684-0121
review

A Review on the Halodefluorination of Aliphatic Fluorides

Richa Gupta
,
We thank the Singapore Agency for Science, Technology and Research (A*STAR grant No. A1983c0033) for financial support.


Abstract

Halodefluorination of alkyl fluorides using group 13 metal halides has been known for quite some time (first reported by Newman in 1938) and is often utilized in its crude stoichiometric form to substitute fluorine with heavier halogens. However, recently halodefluorination has undergone many developments. The reaction can be effected with a range of metal halide sources (including s-block, f-block, and p-block metals), and has been developed into a catalytic process. Furthermore, methods for monoselective halodefluorination in polyfluorocarbons have been developed, allowing exchange of only a single fluorine with a heavier halogen. The reaction has also found use in cascade processes, where the final product may not even contain a halide, but where the conversion of fluorine to a more reactive halogen is a pivotal reaction step in the cascade. This review provides a summary of the developments in the reaction from its inception until now.

1 Introduction

2 Stoichiometric Halodefluorination

2.1 Group 13 Halodefluorination Reagents

2.2 Other Metal Halide Mediated Halodefluorination

3 Catalytic Halodefluorination

4 Monoselective Halodefluorination

5 Cascade Reactions Involving Halodefluorination

6 Summary and Outlook



Publikationsverlauf

Eingereicht: 03. Oktober 2021

Angenommen nach Revision: 02. November 2021

Accepted Manuscript online:
02. November 2021

Artikel online veröffentlicht:
04. Januar 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 1b Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
    • 2a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 2b Caron S. Org. Process Res. Dev. 2020; 24: 470
    • 2c Liu Y, Jiang L, Wang H, Wang H, Jiao W, Chen G, Zhang P, Hui D, Jian X. Nanotech. Rev. 2019; 8: 573
    • 3a Perutz RN, Braun T. Transition Metal-Mediated C–F Bond Activation . In Comprehensive Organometallic Chemistry III, Vol. 1. Mingos DM. P, Crabtree RH. Elsevier; Oxford: 2007: 725-758
    • 3b Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
    • 3c Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
  • 4 In the context of this review, an aliphatic polyfluorocarbon refers to any aliphatic fluorocarbon that contains more than one fluorine atom, and is not to be confused with perfluoroalkanes.

    • Limited examples of formal halodefluorination in aryl fluorides are known, but fall outside the scope of this review; for examples, see:
    • 5a Miller AO, Krasnov VI, Peters D, Platonov VE, Miethchen R. Tetrahedron Lett. 2000; 41: 3817
    • 5b Sladek MI, Braun T, Neumann B, Stammler HG. J. Chem. Soc., Dalton Trans. 2002; 297
    • 6a Hu X.-S, Yu J.-S, Zhou J. Chem. Commun. 2019; 55: 13638
    • 6b Hamel J.-D, Paquin J.-F. Chem. Commun. 2018; 54: 10224
    • 6c Shen Q, Huang Y.-G, Liu C, Xiao J.-C, Chen Q.-Y, Guo Y. J. Fluorine Chem. 2015; 179: 14
    • 6d Ai HJ, Ma X, Song Q, Wu XF. Sci. China Chem. 2021; 64: 1630
  • 7 Henne AL, Newman M. J. Am. Chem. Soc. 1938; 60: 1697
    • 8a Namavari M, Satyamurthy N, Barrio JR. J. Fluorine Chem. 1995; 72: 89
    • 8b Prakash GK. S, Hu J, Simon J, Bellew DR, Olah GA. J. Fluorine Chem. 2004; 125: 595
    • 9a Terao J, Nakamura M, Kambe N. Chem. Commun. 2009; 6011
    • 9b Riera J, Castaǹer J, Carilla J, Robert A. Tetrahedron Lett. 1989; 30: 3825
    • 9c Theodoridis G. Tetrahedron Lett. 1998; 39: 9365
    • 9d Olah GA, Yamato T, Hashimoto T, Shih JG, Trivedi N, Singh BP, Piteau M, Olah JA. J. Am. Chem. Soc. 1987; 109: 3708
    • 9e Sterlin RN, Sidorov VA, Knunyants IL. Russ. Chem. Bull. 1959; 8: 55
    • 9f Burton DJ, Briney GC. J. Org. Chem. 1970; 35: 3036
  • 10 Terao J, Begum SA, Shinohara Y, Tomita M, Naitoh Y, Kambe N. Chem. Commun. 2007; 855
  • 11 Mizukami Y, Song Z, Takahashi T. Org. Lett. 2015; 17: 5942
    • 12a Krahl T, Kemnitz E. J. Fluorine Chem. 2006; 127: 663
    • 12b Kemnitz E, Menz DH. Prog. Solid State Chem. 1998; 26: 97
    • 12c Petrov VA, Krespan CG, Smart BE. J. Fluorine Chem. 1996; 77: 139
    • 12d Krespan CG, Dixon DA. J. Fluorine Chem. 1996; 77: 117
    • 12e Krahl T, Kemnitz E. Catal. Sci. Technol. 2017; 7: 773
    • 12f Calvo B, Marshall CP, Krahl T, Kröhnert J, Trunschke A, Scholz G, Braun T, Kemnitz E. Dalton Trans. 2018; 47: 16461
  • 13 Namavari M, Satyamurthy N, Phelps ME, Barrio JR. Tetrahedron Lett. 1990; 31: 4973
  • 14 Hydrogen is classified as a simple metal in the context of Finkelstein-type reactions through comparison to alkali halides.
  • 15 Landini D, Albanese O, Mottadelli S, Penso M. J. Chem. Soc., Perkin Trans. 1 1992; 2309
  • 16 Olah GA, Narang SC, Field LD. J. Org. Chem. 1981; 46: 3727
  • 17 Dankert F, Deubner HL, Müller M, Buchner MR, Kraus F, von Hänisch C. Z. Anorg. Allg. Chem. 2020; 646: 1501
    • 18a Matsubara K, Ishibashi T, Koga Y. Org. Lett. 2009; 11: 1765
    • 18b Begum S, Terao J, Kambe N. Chem. Lett. 2007; 36: 196
  • 19 San Filippo JJr, Sowinski AF, Romano LJ. J. Org. Chem. 1975; 40: 3295
  • 20 Janjetovic M, Träff AM, Ankner T, Wettergren J, Hilmersson G. Chem. Commun. 2013; 49: 1826
  • 21 Träff AM, Janjetovic M, Ta L, Hilmersson G. Angew. Chem. Int. Ed. 2013; 52: 12073
  • 22 Gencev D, Mogyorosi KS, Riederauer S, Szepvolgyi J. US4416862A, 1983
  • 23 Goh KK. K, Sinha A, Fraser C, Young RD. RSC Adv. 2016; 6: 42708
  • 24 Jaiswal AK, Prasad PK, Young RD. Chem. Eur. J. 2019; 25: 6290
  • 25 Janjetovic M, Ekebergh A, Träff AM, Hilmersson G. Org. Lett. 2016; 18: 2804
  • 26 Dorian A, Landgreen EJ, Petras HR, Shepherd JJ, Williams FJ. Chem. Eur. J. 2021; 27: 10839
    • 27a Bozorgzadeh H, Kemnitz E, Nickkho-Amiry M, Skapin T, Winfield JM. J. Fluorine Chem. 2001; 107: 45
    • 27b Zhang C, Qing F, Quan H, Sekiya A. J. Fluorine Chem. 2016; 191: 84
    • 27c Han W, Wang J, Chen L, Yang L, Wang S, Xi M, Tang H, Liu W, Song W, Zhang J, Li Y, Liu H. Chem. Eng. J. 2019; 355: 594
    • 27d Miller WT, Faqer EW, Criswald PH. J. Am. Chem. Soc. 1950; 72: 705
    • 27e Ainbinder Z, Manzer LE, Nappa MJ. Catalytic Routes to Hydro(chloro)fluorocarbons . In Environmental Catalysis . Ertl G, Knozinger H, Weitkamp J. Wiley-VCH; Weinheim: 1999: 197-212
    • 28a Yoshida S, Shimomori K, Kim Y, Hosoya T. Angew. Chem. Int. Ed. 2016; 55: 10406
    • 28b Idogawa R, Kim Y, Shimomori K, Hosoya T, Yoshida S. Org. Lett. 2020; 22: 9292
    • 29a Mandal D, Gupta R, Young RD. J. Am. Chem. Soc. 2018; 140: 10682
    • 29b Mandal D, Gupta R, Jaiswal AK, Young RD. J. Am. Chem. Soc. 2020; 142: 2572
    • 29c Gupta R, Mandal D, Jaiswal AK, Young RD. Org. Lett. 2021; 23: 1915
    • 29d Gupta R, Jaiswal AK, Mandal D, Young RD. Synlett 2020; 31: 933
    • 30a Chung WT, Higashiya S, Welch JT. J. Fluorine Chem. 2001; 112: 343
    • 30b Higashiya S, Chung WJ, Lim DS, Ngo SC, Kelly WH. IV, Toscano PJ, Welch JT. J. Org. Chem. 2004; 69: 6323
  • 31 Meyer DN, González MA. C, Jiang X, Johansson-Holm L, Lati MP, Elgland M, Nordeman P, Antonib G, Szabó KJ. Chem. Commun. 2021; 57: 8476
  • 32 Ramchandani RK, Wakharkar RD, Sudalai A. Tetrahedron Lett. 1996; 37: 4063
  • 33 Okamoto A, Kumeda K, Yonezawa N. Chem. Lett. 2010; 39: 124
  • 34 Ikeda M, Matsuzawa T, Morita T, Hosoya T, Yoshida S. Chem. Eur. J. 2020; 26: 12333
  • 35 Wang J, Ogawa Y, Shibata N. Sci. Rep. 2019; 9: 19113
  • 36 Lansbergen B, Meister CS, McLeod MC. Beilstein J. Org. Chem. 2021; 17: 404
  • 37 Liu Z, Tu X.-S, Guo L.-T, Wang X.-C. Chem. Sci. 2020; 11: 11548
  • 38 Chakraborty D, Chen EY.-X. Inorg. Chem. Commun. 2002; 5: 698