Synthesis 2022; 54(05): 1203-1216
DOI: 10.1055/a-1684-0772
short review

Progress in the Synthesis of N-Acyl-N,O-acetals

Xiao-Yan Ma
a   School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
,
Fu-Qiang Shao
b   Department of Nuclear Medicine, Zigong First People's Hospital & Zigong Academy of Medical Sciences, Zigong, Sichuan 643000, P. R. China
,
Xinjun Hu
a   School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
c   Graphene Institute of Lanzhou University Fangda Carbon, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
,
Xingyong Liu
a   School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
› Author Affiliations
This work was financially supported by National Natural Science Foundation of China (21901174), the Cooperation Project of Wuliangye Group Co., Ltd. and Sichuan University of Science & Engineering, China (CXY2019ZR013), and the China Postdoctoral Science Foundation (2020M683704XB).


Abstract

N-Acyl-N,O-acetals are key components in a variety of bioactive natural products. Furthermore, they are synthetic equivalents of unstable N-acylimines and building blocks in organic synthesis. Tremendous efforts have been made in the synthesis of such acetals, these methods can be broadly classified into two categories: electrochemical oxidation and chemical methods. Herein, we will summarize progress in the preparation of these subunits, which may aid the development of new synthetic methods for N-acyl-N,O-acetals.

1 Introduction

2 Synthetic Methods for Preparing N-Acyl-N,O-acetals

2.1 Electrochemical Oxidation

2.2 Chemical Methods

2.3 Other Methods

3 Summary and Outlook



Publication History

Received: 20 September 2021

Accepted after revision: 02 November 2021

Publication Date:
02 November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Smith AB. III, Safanov IG, Corbett RM. J. Am. Chem. Soc. 2001; 123: 12426
    • 1b Troast DM, Porco JA. Org. Lett. 2002; 4: 991
  • 2 Benz F, Knüsel F, Nüesch J, Treichler H, Voser W, Nyfeler R, Keller-Schierlein W. Helv. Chim. Acta 1974; 57: 2459
    • 3a Takeuchi T, Iinuma H, Kunimoto S, Masuda T, Ishizuka M, Takeuchi M, Hamada M, Naganawa H, Kondo S, Umezawa H. J. Antibiot. 1981; 34: 1619
    • 3b Umezawa H, Kondo S, Iinuma H, Kunimoto S, Ikeda Y, Iwasawa H, Ikeda D, Takeuchi T. J. Antibiot. 1981; 34: 1622
  • 4 Sohn J.-H, Waizumi N, Zhong MZ, Rawal VH. J. Am. Chem. Soc. 2005; 127: 7290
  • 5 Konishi M, Saito K.-I, Numata K.-I, Tsuno T, Asama K, Tsukiura H, Naito T, Kawaguchi H. J. Antibiot. 1977; 30: 789
    • 6a Cichewicz RH, Valeriote FA, Crews P. Org. Lett. 2004; 6: 1951
    • 6b Jiang X, Garcia-Fortanet J, De Brabander JK. J. Am. Chem. Soc. 2005; 127: 11254
    • 6c Jiang X, Williams N, De Brabander JK. Org. Lett. 2007; 9: 227
    • 6d Shangguan N, Kiren S, Williams LJ. Org. Lett. 2007; 9: 1093
  • 7 Jewett JC, Rawal VH. Angew. Chem. Int. Ed. 2007; 46: 6502
    • 8a Mosey RA, Floreancig PE. Nat. Prod. Rep. 2012; 29: 980
    • 8b Pettit GR, Xu J.-P, Chapuis J.-C, Pettit RK, Tackett LP, Doubek DL, Hooper JN. A, Schmidt JM. J. Med. Chem. 2004; 47: 1149
    • 8c Wan S, Wu F, Rech JC, Green ME, Balachandran R, Horne WS, Day BW, Floreancig PE. J. Am. Chem. Soc. 2011; 133: 16668
    • 9a Vanier C, Wagner A, Mioskowski C. Chem. Eur. J. 2001; 7: 2318
    • 9b Sugiura M, Hagio H, Hirabayashi R, Kobayshi S. J. Am. Chem. Soc. 2001; 123: 12510
  • 10 Linstead RP, Shephard BR, Weedon BC. L. J. Chem. Soc. 1951; 2854
  • 11 Ross SD, Finkelstein M, Petersen RC. J. Am. Chem. Soc. 1966; 88: 4657
  • 12 Rudd EJ, Finkelstein M, Ross SD. J. Org. Chem. 1972; 37: 1763
  • 13 Finkelstein M, Ross SD. Tetrahedron 1972; 28: 4497
  • 14 Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc. 1975; 97: 4264
  • 15 Iwasaki T, Horikawa H, Matsumoto K, Miyoshi M. Bull. Chem. Soc. Jpn. 1979; 52: 826
  • 16 Yoshida J.-I, Isoe S. Tetrahedron Lett. 1987; 28: 6621
  • 17 Suda K, Hotoda K, Watanabe J.-I, Shiozawa K, Takanami T. J. Chem. Soc., Perkin Trans. 1 1992; 1283
  • 18 Kamada T, Oku A. J. Chem. Soc., Perkin Trans. 1 1998; 3381
  • 19 Siu T, Li W, Yudin AK. J. Comb. Chem. 2000; 2: 545
  • 20 Matsumura Y, Shirakawa Y, Satoh Y, Umino M, Tanaka T, Maki T, Onomura O. Org. Lett. 2000; 2: 1689
  • 21 Tajima T, Kurihara H, Fuchigami T. J. Am. Chem. Soc. 2007; 129: 6680
  • 22 Mazurkiewicz R, Adamek J, Październiok-Holewa A, Zielińska K, Simka W, Gajos A, Szymura K. J. Org. Chem. 2012; 77: 1952
  • 23 Green RA, Brown RC. D, Pletch D. Org. Process Res. Dev. 2015; 19: 1424
  • 24 Breuer SW, Bernath T, Ben-Ishai D. Tetrahedron 1967; 23: 2869
  • 25 Phan XT, Shannon PJ. J. Org. Chem. 1983; 48: 5164
  • 26 Lokensgard JP, Fischer JW, Bartz WJ, Meinwald J. J. Org. Chem. 1985; 50: 5609
  • 27 Nagasaka T, Tamano H, Hamaguchi F. Heterocycles 1986; 24: 1231
  • 28 Harding KE, Liu LT, Farrar DG, Coleman MT, Tansey SK. Synth. Commun. 1991; 21: 1409
  • 29 Katritzky AR, Fan WQ, Black M, Pernak J. J. Org. Chem. 1992; 57: 547
  • 30 Hoffman RV, Nayyar NK. J. Org. Chem. 1994; 59: 3530
  • 31 Gizecki P, Ait Youcef R, Poulard C, Dhal R, Dujardin G. Tetrahedron Lett. 2004; 45: 9589
  • 32 Wan S, Green ME, Park J.-H, Floreancig PE. Org. Lett. 2007; 9: 5385
  • 33 Li G, Fronczek FR, Antilla JC. J. Am. Chem. Soc. 2008; 130: 12216
  • 34 Shao N, Huang X, Palani A, Aslanian R, Buevich A, Piwinski J, Huryk R, Seidel-Dugan C. Synthesis 2009; 17: 2855
  • 35 Downey CW, Fleisher AS, Rague JT, Safran CL, Venable ME, Pike RD. Tetrahedron Lett. 2011; 52: 4756
  • 36 Li M, Luo B, Liu Q, Hu YA, Ganesan A, Huang P, Wen S. Org. Lett. 2014; 16: 10
  • 37 Halli J, Hofman K, Beisel T, Manolikakes G. Eur. J. Org. Chem. 2015; 4624
  • 38 Enright RN, Grinde JL, Wurtz LI, Paeth MS, Wittman TR, Cliff ER, Sankari YT, Henningsen LT, Tan C, Scanlon JD, Willoughby PH. Tetrahedron 2016; 72: 6397
  • 39 Yi Y, Gholami H, Morrow MG, Borhan B. Org. Biomol. Chem. 2017; 15: 9570
  • 40 Ma X.-Y, Zhang C.-F, Hu X, Zou W, Li Y. Tetrahedron 2020; 76: 131085
    • 41a Thomas TG, Roush WR. Tetrahedron Lett. 1995; 36: 1581
    • 41b Kagawa N, Ihara M, Toyota M. J. Org. Chem. 2006; 71: 6796
    • 41c Kagawa N, Ihara M, Toyota M. Org. Lett. 2006; 8: 875
    • 41d Hoffmann RW, Schlapbach A. Tetrahedron Lett. 1993; 34: 7903
    • 41e Kocienski PJ, Narquizian R, Raubo P, Smith C, Boyle FT. Synlett 1998; 869
    • 41f Toyota M, Hirota M, Hirano H, Ihara M. Org. Lett. 2000; 2: 2031
    • 41g Roush WR, Pfeifer LA. Org. Lett. 2000; 2: 859
    • 41h Roush WR, Marron TG. Tetrahedron Lett. 1993; 34: 5421
    • 42a Uesugi S.-I, Watanabe T, Imaizumi T, Ota Y, Yoshida K, Ebisu H, Chinen T, Nagumo Y, Shibuya M, Kanoh N, Usui T, Iwabuchi Y. J. Org. Chem. 2015; 80: 12333
    • 42b An C, Jurica JA, Walsh SP, Hoye AT, Smith AB. III. J. Org. Chem. 2013; 78: 4278
    • 42c An C, Hoye AT, Smith AB. III. Org. Lett. 2012; 14: 4350
    • 42d Smith AB. III, Jurica JA, Walsh SP. Org. Lett. 2008; 10: 5625
    • 42e Crimmins MT, Stevens JM, Schaaf GM. Org. Lett. 2009; 11: 3990
    • 42f Watanabe T, Imaizumi T, Chinen T, Nagumo Y, Shibuya M, Usui T, Kanoh N, Iwabuchi Y. Org. Lett. 2010; 12: 1040
    • 43a Rölle T, Hoffmann RW. Helv. Chim. Acta 2004; 87: 1214
    • 43b Kocienski PJ, Narquizian R, Raubo P, Smith C, Boyle FT. Synlett 1998; 1432
    • 44a Trost BM, Yang H, Probst GD. J. Am. Chem. Soc. 2004; 126: 48
    • 44b Fukui H, Tsuchiya Y, Fujita K, Nakagawa T, Koshino H, Nakata T. Bioorg. Med. Chem. Lett. 1997; 7: 2081
    • 44c Kocienski P, Raubo P, Davis JK, Boyle FT, Davies DE, Richter A. J. Chem. Soc., Perkin Trans. 1 1996; 1797
    • 44d Kocienski PJ, Raubo P, Smith C, Boyle FT. Synthesis 1999; 2087
    • 44e Hong CY, Kishi Y. J. Org. Chem. 1990; 55: 4242
    • 44f Roush WR, Pfeifer LA, Marron TG. J. Org. Chem. 1998; 63: 2064
  • 45 Nishii Y, Higa T, Takahashi S, Nakata T. Tetrahedron Lett. 2009; 50: 3597