Synthesis
DOI: 10.1055/a-1684-5552
special topic
Bürgenstock Special Section 2021 – Future Stars in Organic Chemistry

Hydrogenation of Olefins, Alkynes, Allenes, and Arenes by Borane-Based Frustrated Lewis Pairs

Felix Wech
,
Urs Gellrich
This work was supported by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) (GE 3117/1-1).


Abstract

In recent years, borane-based frustrated Lewis pairs have proved to be efficient hydrogenation catalysts and they have become an alternative to transition-metal-based systems. The hydrogen activation by classic FLPs leads to a protonated Lewis base and a borohydride. Consequently, hydrogenations catalyzed by classic FLPs consist of stepwise hydride transfer reactions and protonations (or vice versa). More recently, systems that operate via an initial hydroboration have allowed the substrate scope for FLP-catalyzed hydrogenations to be extended. In this review, hydrogenations of organic substrates catalyzed by borane­-based frustrated Lewis pairs are discussed. Emphasis is given to the mechanistic aspects of these catalytic reactions.

1 Introduction

2 FLP-Catalyzed Hydrogenation of Polarized Double Bonds

2.1 Hydrogenation of Michael Acceptors by FLPs

2.2 Asymmetric Hydrogenation of Polarized Double Bonds

2.3 Hydrogenation of Arenes and N-Heterocycles

3 Hydrogenation of Unactivated Olefins and Alkynes

3.1 Hydrogenation of Olefins and Alkynes by an Initial Hydroboration

4 Summary and Outlook



Publikationsverlauf

Eingereicht: 14. Oktober 2021

Angenommen nach Revision: 02. November 2021

Publikationsdatum:
02. November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a v. Wilde MP. Ber. Dtsch. Chem. Ges. 1874; 7: 352
    • 1b van Laren MW, Elsevier CJ. Angew. Chem. Int. Ed. 1999; 38: 3715
    • 1c Radkowski K, Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 355
    • 1d Karunananda MK, Mankad NP. J. Am. Chem. Soc. 2015; 137: 14598
  • 2 Schrock RR, Osborn JA. J. Am. Chem. Soc. 1976; 98: 2143
    • 3a Crabtree RH, Felkin H, Morris GE. J. Organomet. Chem. 1977; 141: 205
    • 3b Knowles WS, Sabacky MJ. Chem. Commun. 1968; 1445
  • 4 Slaugh LH. J. Org. Chem. 1967; 32: 108
    • 5a Welch GC, San Juan RR, Masuda JD, Stephan DW. Science 2006; 314: 1124

    • For a general review on FLPs, see:
    • 5b Stephan DW. J. Am. Chem. Soc. 2015; 137: 10018
    • 6a Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
    • 6b Tuttle JB, Ouellet SG, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 12662
    • 6c Yang JW, Hechavarria Fonseca MT, List B. Angew. Chem. Int. Ed. 2004; 43: 6660
    • 7a Zhu C, Akiyama T. Org. Lett. 2009; 11: 4180
    • 7b Zhu C, Saito K, Yamanaka M, Akiyama T. Acc. Chem. Res. 2015; 48: 388
  • 8 Chatterjee I, Qu Z.-W, Grimme S, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 12158
  • 9 Grimme S, Kruse H, Goerigk L, Erker G. Angew. Chem. Int. Ed. 2010; 49: 1402
  • 10 Schirmer B, Grimme S. Chem. Commun. 2010; 46: 7942
  • 11 Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G. Angew. Chem. Int. Ed. 2008; 47: 7543
  • 12 Geier SJ, Stephan DW. J. Am. Chem. Soc. 2009; 131: 3476
  • 13 Erős G, Mehdi H, Pápai I, Rokob TA, Király P, Tárkányi G, Soós T. Angew. Chem. Int. Ed. 2010; 49: 6559
    • 14a Paradies J. Eur. J. Org. Chem. 2019; 2019: 283
    • 14b Paradies J. Angew. Chem. Int. Ed. 2014; 53: 3552
    • 15a Spies P, Erker G, Kehr G, Bergander K, Fröhlich R, Grimme S, Stephan DW. Chem. Commun. 2007; 5072
    • 15b Rokob TA, Hamza A, Stirling A, Soós T, Pápai I. Angew. Chem. Int. Ed. 2008; 47: 2435
    • 15c Hamza A, Stirling A, András Rokob T, Pápai I. Int. J. Quantum Chem. 2009; 109: 2416
    • 15d For a comprehensive review on FLP-catalyzed hydrogenations, see: Lam J, Szkop KM, Mosaferi E, Stephan DW. Chem. Soc. Rev. 2019; 48: 3592
  • 16 Scott DJ, Fuchter MJ, Ashley AE. Chem. Soc. Rev. 2017; 46: 5689
  • 17 Hermeke J, Mohr J, Oestreich M. Chem. Soc. Rev. 2015; 44: 2202
  • 18 Chase PA, Welch GC, Jurca T, Stephan DW. Angew. Chem. Int. Ed. 2007; 46: 8050
  • 19 Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskelä M, Repo T, Pyykkö P, Rieger B. J. Am. Chem. Soc. 2008; 130: 14117
  • 20 Erős G, Nagy K, Mehdi H, Pápai I, Nagy P, Király P, Tárkányi G, Soós T. Chem. Eur. J. 2012; 18: 574
  • 21 Stephan DW, Greenberg S, Graham TW, Chase P, Hastie JJ, Geier SJ, Farrell JM, Brown CC, Heiden ZM, Welch GC, Ullrich M. Inorg. Chem. 2011; 50: 12338
    • 22a Mahdi T, Stephan DW. J. Am. Chem. Soc. 2014; 136: 15809
    • 22b Scott DJ, Fuchter MJ, Ashley AE. J. Am. Chem. Soc. 2014; 136: 15813
  • 23 Barrero AF, Alvarez-Manzaneda EJ, Chahboun R, Meneses R. Synlett 1999; 1663
  • 24 Inés B, Palomas D, Holle S, Steinberg S, Nicasio JA, Alcarazo M. Angew. Chem. Int. Ed. 2012; 51: 12367
  • 25 Khan I, Manzotti M, Tizzard GJ, Coles SJ, Melen RL, Morrill LC. ACS Catal. 2017; 7: 7748
  • 26 Greb L, Daniliuc C.-G, Bergander K, Paradies J. Angew. Chem. Int. Ed. 2013; 52: 5876
    • 27a Lightfoot A, Schnider P, Pfaltz A. Angew. Chem. Int. Ed. 1998; 37: 2897
    • 27b Ohkuma T, Ooka H, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 2675
    • 27c Hou G, Gosselin F, Li W, McWilliams JC, Sun Y, Weisel M, O’Shea PD, Chen C, Davies IW, Zhang X. J. Am. Chem. Soc. 2009; 131: 9882
  • 28 Chen D, Wang Y, Klankermayer J. Angew. Chem. Int. Ed. 2010; 49: 9475
  • 29 Lindqvist M, Borre K, Axenov K, Kótai B, Nieger M, Leskelä M, Pápai I, Repo T. J. Am. Chem. Soc. 2015; 137: 4038
  • 30 Wang H, Fröhlich R, Kehr G, Erker G. Chem. Commun. 2008; 5966
  • 31 Wei S, Du H. J. Am. Chem. Soc. 2014; 136: 12261
  • 32 Meng W, Feng X, Du H. Acc. Chem. Res. 2018; 51: 191
  • 33 Geier SJ, Chase PA, Stephan DW. Chem. Commun. 2010; 46: 4884
  • 34 Segawa Y, Stephan DW. Chem. Commun. 2012; 48: 11963
  • 35 Mahdi T, del Castillo JN, Stephan DW. Organometallics 2013; 32: 1971
  • 36 Greb L, Oña-Burgos P, Schirmer B, Grimme S, Stephan DW, Paradies J. Angew. Chem. Int. Ed. 2012; 51: 10164
    • 37a Ramp FL, DeWitt EJ, Trapasso LE. J. Org. Chem. 1962; 27: 4368
    • 37b DeWitt EJ, Ramp FL, Trapasso LE. J. Am. Chem. Soc. 1961; 83: 4672
  • 38 Haenel MW, Narangerel J, Richter U.-B, Rufińska A. Angew. Chem. Int. Ed. 2006; 45: 1061
  • 39 Parks DJ, Piers WE, Yap GP. A. Organometallics 1998; 17: 5492
  • 40 Xu B.-H, Kehr G, Fröhlich R, Wibbeling B, Schirmer B, Grimme S, Erker G. Angew. Chem. Int. Ed. 2011; 50: 7183
  • 41 Wang Y, Chen W, Lu Z, Li ZH, Wang H. Angew. Chem. Int. Ed. 2013; 52: 7496
  • 42 Lindlar H. Helv. Chim. Acta 1952; 35: 446
  • 43 Liu Y, Hu L, Chen H, Du H. Chem. Eur. J. 2015; 21: 3495
  • 44 Chernichenko K, Madarász A, Pápai I, Nieger M, Leskelä M, Repo T. Nat. Chem. 2013; 5: 718
  • 45 Gellrich U. Angew. Chem. Int. Ed. 2018; 57: 4779
  • 46 Gellrich U, Diskin-Posner Y, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2016; 138: 13307
  • 47 Hasenbeck M, Gellrich U. Chem. Eur. J. 2021; 27: 5615
  • 48 Wech F, Hasenbeck M, Gellrich U. Chem. Eur. J. 2020; 26: 13445
  • 49 Wech F, Müller T, Becker J, Gellrich U. Synthesis 2021; 53: 666
  • 50 Hasenbeck M, Ahles S, Averdunk A, Becker J, Gellrich U. Angew. Chem. Int. Ed. 2020; 59: 23885

    • For works on water tolerant FLPs see:
    • 51a Scott DJ, Simmons TR, Lawrence EJ, Wildgoose GG, Fuchter MJ, Ashley AE. ACS Catal. 2015; 5: 5540
    • 51b Dorkó É, Szabó M, Kótai B, Pápai I, Domján A, Soós T. Angew. Chem. Int. Ed. 2017; 56: 9512
    • 51c Fasano V, Ingleson M. Synthesis 2018; 50: 1783