Synthesis
DOI: 10.1055/a-1701-7397
review

Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant

Amanda Aline Barboza
,
Juliana Arantes Dantas
,
Mateus Oliveira Costa
,
Attilio Chiavegatti
,
Guilherme Augusto de Melo Jardim
,
We are grateful for financial support in the form of funding and fellowships provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (São Paulo Research Foundation) (Grant Nos. 2014/50249-8, 2020/10246-0, 2020/01255-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Coordination for the Improvement of Higher Education Personnel) (Finance Code 001), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (The Brazilian National Council for Scientific and Technological Development) and GlaxoSmithKline (GSK).


Abstract

Over the past years, Pd(II)-catalyzed oxidative couplings have enabled the construction of molecular scaffolds with high structural diversity via C–C, C–N and C–O bond-forming reactions. In contrast to the use of stoichiometric amounts of more common oxidants, such as metal salts (Cu and Ag) and benzoquinone derivatives, the use of molecular oxygen for the direct or indirect regeneration of Pd(II) species presents itself as a more viable alternative in terms of economy and sustainability. In this review, we describe recent advances on the development of Pd-catalyzed oxidative cyclizations/functionalizations, where molecular oxygen plays a pivotal role as the sole stoichiometric oxidant.

1 Introduction

2 Oxidative C–C and C–Nu Coupling

2.1 Intramolecular Oxidative C–Nu Heterocyclization Reactions

2.1.1 C–H Activation

2.1.2 Wacker/Aza-Wacker-Type Cyclization

2.1.3 Tandem Wacker/Aza-Wacker and Cyclization/Cross-Coupling Reactions

2.2 Intermolecular Oxidative C–Nu Heterocoupling Reactions

2.3 Intramolecular Oxidative (C–C) Carbocyclization Reactions

2.4 Intermolecular Oxidative C–C Coupling Reactions

2.4.1 Cyclization Reactions

2.4.2 Cross-Coupling Reactions

2.4.3 Homo-Coupling Reactions

3 Aerobic Dehydrogenative Coupling/Functionalization

4 Oxidative C–H Functionalization

5 Summary



Publication History

Received: 15 September 2021

Accepted after revision: 19 November 2021

Publication Date:
19 November 2021 (online)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart

 
  • References

  • 1 Liang Y.-F, Jiao N. Acc. Chem Res. 2017; 50: 1640
  • 2 Modern Oxidation Methods . Backvall J.-E. VCH-Wiley; Weinheim: 2004
  • 3 Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
  • 4 Stahl S. Angew. Chem. Int. Ed. 2004; 43: 3400
  • 5 Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 1959; 71: 176
  • 6 The Activation of Dioxygen and Homogeneous Catalytic Oxidation . Barton DH. R, Martell AE, Sawyer DT. Plenum Press; New York: 1993
  • 7 Konnick MM, Gandhi BA, Guzei IA, Stahl SS. Angew. Chem. Int. Ed. 2006; 45: 2904
  • 8 Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
  • 9 Steinhoff BA, King AE, Stahl SS. J. Org. Chem. 2006; 71: 1861
  • 10 Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
  • 11 Gligorich KM, Sigman SS. Chem. Commun. 2009; 3854

    • Selected reviews:
    • 12a Cao Q, Bailie DS, Fua R, Muldoon MJ. Green Chem. 2015; 17: 2750
    • 12b Huang Z, Tang S, Lei A. Sci. Bull. 2015; 60: 1391
    • 12c Hu M, Wu W, Jiang H. ChemSusChem 2019; 12: 2911
    • 12d Liu J, Guðmundsson A, Bäckvall J.-E. Angew. Chem. Int. Ed. 2020; 60: 15686
  • 13 Lei A, Shi W, Liu C, Liu W, Zhang H, He C. Oxidative Cross-Coupling Reactions, 1st ed. Wiley-VCH; Weinheim: 2017: 240
  • 14 Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
  • 15 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
  • 16 Reddy KR, Kannaboina P, Das P. Asian J. Org. Chem. 2017; 6: 534
  • 17 Songsiang U, Thongthoom T, Boonyarat C, Yenjai C. J. Nat. Prod. 2011; 74: 208
  • 18 Youn SW, Kim YH, Jo YH. Adv. Synth. Catal. 2019; 361: 462
  • 19 Lorion MM, Duarte FJ. S, Calhorda MJ, Oble J, Poli G. Org. Lett. 2016; 18: 1020
  • 20 Barboza AA, Neto AC, Rosset IG, Jardim GA. M, Ferreira MA. B. J. Org. Chem. 2021; 86: 3923
  • 21 Yip K.-T, Yang M, Law K.-L, Zhu N.-Y, Yang D. J. Am. Chem. Soc. 2006; 128: 3130
  • 22 Du W, Gu Q, Li Y, Lin Z, Yang D. Org. Lett. 2017; 19: 316
  • 23 Lo K.-Y, Ye L, Yang D. Synlett 2017; 28: 1570
  • 24 Li J, Peng H, Wang F, Wang X, Jiang H, Yin B. Org. Lett. 2016; 18: 3226
  • 25 Li J, Lu L, Pan Q, Ren Y, Liu B, Yin B. Adv. Synth. Catal. 2017; 359: 2001
  • 26 Wang Z, Luo W, Lu L, Yin B. J. Org. Chem. 2018; 83: 10080
  • 27 Wang D, Ling F, Liu X, Li Z, Ma C. Chem. Eur. J. 2016; 22: 124
  • 28 Dawood DH, Beniazza R, Robert F, Landais Y. Tetrahedron 2019; 75: 561
  • 29 Li J, Wu Y, Hu M, Li C, Li M, He D, Jiang H. Green Chem. 2019; 21: 4084
  • 30 Xia Y, Huang H, Zhang F, Deng G.-J. Org. Lett. 2019; 21: 7489
  • 31 Tang R.-S, Chen L.-Y, Lai C.-H, Chuang T.-H. Org. Lett. 2020; 22: 9337
  • 32 Wang G, Li J.-C, Zhou Y.-G, Ye Z.-S. Org. Lett. 2021; 23: 802
  • 33 Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
  • 34 Gigant N, Bäckvall J.-E. Chem. Eur. J. 2013; 19: 10799
  • 35 Bar GL. J, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
  • 36 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 37 Wu Z, Wen K, Zhang J, Zhang W. Org. Lett. 2017; 19: 2813
  • 38 Wu Z, Zhang J, Li Y, Zhang W. Tetrahedron Lett. 2017; 58: 2640
  • 39 Wen K, Wu Z, Huang B, Ling Z, Gridnev ID, Zhang W. Org. Lett. 2018; 20: 1608
  • 40 Li Y, Wu Z, Ling Z, Chen H, Zhang W. Org. Chem. Front. 2019; 6: 486
  • 41 Zhang T, Shen H.-C, Xu J.-C, Fan T, Han Z.-Y, Gong L.-Z. Org. Lett. 2019; 21: 2048
  • 42 Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
  • 43 Yang Y, Qiu X, Zhao Y, Mu Y, Shi Z. J. Am. Chem. Soc. 2016; 138: 495
  • 44 Seth K, Purohit K, Chakraborti AK. Org. Lett. 2014; 16: 2334
  • 45 From C-H to C-C Bonds: Cross-Dehydrogenative-Coupling . Li C.-J. The Royal Society of Chemistry; Cambridge: 2015
  • 46 Wu K, Meng L, Huai M, Huang Z, Liu C, Qi X, Lei A. Chem. Commun. 2017; 53: 2294
  • 47 Zhang J, Han F.-S. iScience 2019; 17: 256
  • 48 Ramesh P, Satyanarayana G. J. Org. Chem. 2019; 84: 12856
  • 49 Sahoo S, Pal P. J. Org. Chem. 2021; 86: 4081
  • 50 Mu W.-L, Wang M, Li H.-J, Huang D.-M, Zhang Y.-Y, Li C.-Y, Liu Y, Wu Y.-C. Adv. Synth. Catal. 2017; 359: 4250
  • 51 Ibrahim HM, Behbehani H. J. Org. Chem. 2020; 85: 15368
  • 52 Wang H, Cao F, Gao W, Wang X, Yang Y, Shi T, Wang T. Org. Lett. 2021; 23: 863
  • 53 Tang X, Yang K, Zeng L, Liu Q, Chen H. Org. Biomol. Chem. 2017; 15: 8504
  • 54 Zhang X, Su L, Qiu L, Fan Z, Zhang X, Lina S, Huang Q. Org. Biomol. Chem. 2017; 15: 3499
  • 55 Gair JJ, Aines BE, Filatov AS, Musaev DG, Lewis JC. ACS Catal. 2019; 9: 11386
  • 56 Navarro R, García J, Urriolabeitia EP, Cativiela C, Diazde-Villegas MD. J. Organomet. Chem. 1995; 490: 35
  • 57 Li Y, Zhang P, Liu Y.-J, Yu Z.-X, Shi B.-F. ACS Catal. 2020; 10: 8212
  • 58 Ma B.-B, Lan X.-B, Shen D.-S, Liu F.-S, Xu C. J. Organomet. Chem. 2019; 897: 13
  • 59 Matsumoto K, Takeda S, Hirokane T, Yoshida M. Org. Lett. 2019; 21: 7279
  • 60 Singh AK, Kanauji VK, Tiwari V, Sabiah S, Kandasamy J. Org. Lett. 2020; 22: 7650
  • 61 Wang D, Salazar CA, Stahl SS. Organometallics 2021; 40: 2198
  • 62 Beckers I, Krasniqi B, Kumar P, Escudero D, De Vos D. ACS Catal. 2021; 11: 2435
  • 63 Liu Y, Wang X, Cai X, Chen G, Li J, Zhou Y, Wang J. ChemCatChem 2016; 8: 448
  • 64 Cho HJ, Kuo MJ, Ye M, Kurz Y, Yuan Y, Lobo RF. ACS Sustainable Chem. Eng. 2021; 9: 3316
  • 65 Ohnishi R, Sugawara M, Ezawa T, Sohtome Y, Sodeoka M. Chem. Pharm. Bull. 2020; 68: 895
  • 66 Tereniak SJ, Bruns DL, Stahl SS. J. Am. Chem. Soc. 2020; 142: 20318
  • 67 Wang D, Stahl SS. J. Am. Chem. Soc. 2017; 139: 5704
  • 68 Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
  • 69 Liu W, Yu Q, Hu L, Chen Z, Huang J. Chem. Sci. 2015; 6: 5768
  • 70 Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
  • 71 Wang Y, Li C, Huang J. Asian J. Org. Chem. 2017; 6: 44
  • 72 Li C, Li J, An Y, Peng J, Wu W, Jiang H. J. Org. Chem. 2016; 81: 12189
  • 73 Yoo H.-S, Son SH, Cho YY, Lee SJ, Jang HJ, Kim YM, Kim DH, Kim NY, Park BY, Lee YS, Kim N.-J. J. Org. Chem. 2019; 84: 10012
  • 74 Kim YM, Yoo H.-S, Son SH, Kim GY, Jang HJ, Kim DH, Kim SD, Park BY, Kim N.-J. Eur. J. Org. Chem. 2021; 618
  • 75 Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
  • 76 Ackermann L. Chem. Rev. 2011; 111: 1315
  • 77 Gutekunsta WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
  • 78 Shah S, Shee M, Singh AK, Paul A, Singh ND. P. J. Org. Chem. 2020; 85: 3426
  • 79 He J, Shao Q, Wu Q, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 3344
  • 80 Maite S, Mandal T, Dash BP, Dash J. J. Org. Chem. 2021; 86: 1396