Synthesis 2022; 54(06): 1527-1536
DOI: 10.1055/a-1701-7679
short review

Synthesis and Applications of Chiral Bicyclic Bisborane Catalysts

Zhao-Ying Yang
,
Ming Zhang
,
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21871147 and 91956106), the Natural Science Foundation of Tianjin (Nos. 20JCZDJC00720 and 20JCJQJC00030), the NCC Fund (No. NCC2020PY10), and the Fundamental Research Funds for the Central Universities (No. 2122018165). X.-C.W. thanks the Tencent Foundation for support via the Xplorer Prize.


Abstract

The development of chiral borane Lewis acid catalysts opened the door for transition-metal-free catalyzed asymmetric organic reactions. Herein, we have summarized our work on the preparation of two classes of novel chiral bicyclic bisborane Lewis acid catalysts derived from C 2-symmetric [3.3.0] dienes and [4.4] dienes, respectively. These catalysts not only form frustrated Lewis pairs with Lewis bases to catalyze asymmetric hydrogenation reactions but also activate Lewis basic functional groups in traditional Lewis acid catalyzed asymmetric reactions.

1 Introduction

2 Synthesis of C 2-Symmetric Fused Bicyclic Bisborane Catalysts and Their Use in Imine Hydrogenation

3 Synthesis of Spiro Bicyclic Bisborane Catalysts and Their Use in ­N-Heteroarene Reduction

4 Other Types of Asymmetric Reactions Promoted by Chiral ­Bicyclic Bisborane Catalysts

5 Conclusion



Publikationsverlauf

Eingereicht: 05. November 2021

Angenommen nach Revision: 19. November 2021

Publikationsdatum:
19. November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Carden JL, Dasgupta A, Melen RL. Chem. Soc. Rev. 2020; 49: 1706
    • 1b Rao B, Kinjo R. Chem. Asian J. 2018; 13: 1279
    • 1c Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
  • 2 Welch GC, San Juan RR, Masuda JD, Stephan DW. Science 2006; 314: 1124
    • 3a McCahill JS. J, Welch GC, Stephan DW. Angew. Chem. Int. Ed. 2007; 46: 4968
    • 3b Stephan DW. Org. Biomol. Chem. 2008; 6: 1535
    • 4a Stephan DW, Erker G. Angew. Chem. Int. Ed. 2010; 49: 46
    • 4b Erker G. Pure Appl. Chem. 2012; 84: 2203
    • 4c Stephan DW. Acc. Chem. Res. 2015; 48: 306
    • 4d Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
    • 4e Stephan DW. Science 2016; 354: aaf7229
    • 4f Stephan DW. Chem 2020; 6: 1520
  • 5 Chen D, Klankermayer J. Chem. Commun. 2008; 2130
  • 6 Parks DJ, Piers WE, Yap GP. A. Organometallics 1998; 17: 5492
    • 7a Chen D, Wang Y, Klankermayer J. Angew. Chem. Int. Ed. 2010; 49: 9475
    • 7b Ghattas G, Chen D, Pan F, Klankermayer J. Dalton Trans. 2012; 41: 9026
    • 8a Sumerin V, Chernichenko K, Nieger M, Leskelä M, Rieger B, Repo T. Adv. Synth. Catal. 2011; 353: 2093
    • 8b Lindqvist M, Borre K, Axenov K, Kótai B, Nieger M, Leskelä M, Pápai I, Repo T. J. Am. Chem. Soc. 2015; 137: 4038
    • 9a Mewald M, Fröhlich R, Oestreich M. Chem. Eur. J. 2011; 17: 9406
    • 9b Hermeke J, Mewald M, Irran E, Oestreich M. Organometallics 2014; 33: 5097
    • 9c Süsse L, Hermeke J, Oestreich M. J. Am. Chem. Soc. 2016; 138: 6940
    • 9d Süsse L, Vogler M, Mewald M, Kemper B, Irran E, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 11441
    • 10a Liu Y, Du H. J. Am. Chem. Soc. 2013; 135: 6810
    • 10b Wei S, Du H. J. Am. Chem. Soc. 2014; 136: 12261
    • 10c Zhang Z, Du H. Angew. Chem. Int. Ed. 2015; 54: 623
    • 10d Ren X, Li G, Wei S, Du H. Org. Lett. 2015; 17: 990
    • 10e Ren X, Du H. J. Am. Chem. Soc. 2016; 138: 810
    • 11a Wang X, Kehr G, Daniliuc CG, Erker G. J. Am. Chem. Soc. 2014; 136: 3293
    • 11b Ye K.-Y, Wang X, Daniliuc CG, Kehr G, Erker G. Eur. J. Inorg. Chem. 2017; 2017: 368
    • 12a Wang Z.-Q, Feng C.-G, Xu M.-H, Lin G.-Q. J. Am. Chem. Soc. 2007; 129: 5336
    • 12b Feng C.-G, Wang Z.-Q, Tian P, Xu M.-H, Lin G.-Q. Chem. Asian J. 2008; 3: 1511
  • 13 Tu X.-S, Zeng N.-N, Li R.-Y, Zhao Y.-Q, Xie D.-Z, Peng Q, Wang X.-C. Angew. Chem. Int. Ed. 2018; 57: 15096
    • 14a Chase PA, Jurca T, Stephan DW. Chem. Commun. 2008; 1701
    • 14b Rokob TA, Hamza A, Stirling A, Pápai I. J. Am. Chem. Soc. 2009; 131: 2029
    • 14c Rokob TA, Hamza A, Pápai I. J. Am. Chem. Soc. 2009; 131: 10701
  • 15 Winkelhaus D, Neumann B, Stammler H.-G, Mitzel NW. Dalton Trans. 2012; 41: 8609
    • 16a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 16b Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
  • 17 Li X, Tian J.-J, Liu N, Tu X.-S, Zeng N.-N, Wang X.-C. Angew. Chem. Int. Ed. 2019; 58: 4664
  • 18 Nieman JA, Keay BA. Synth. Commun. 1999; 29: 3829
  • 19 Harada N, Ochiai N, Takada K, Uda H. J. Chem. Soc., Chem. Commun. 1977; 495
    • 20a Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 20b He Y.-M, Song F.-T, Fan Q.-H. Top. Curr. Chem. 2013; 343: 145
    • 20c Wiesenfeldt MP, Nairoukh Z, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10460
    • 21a Legault CY, Charette AB. J. Am. Chem. Soc. 2005; 127: 8966
    • 21b Ye Z.-S, Chen M.-W, Chen Q.-A, Shi L, Duan Y, Zhou Y.-G. Angew. Chem. Int. Ed. 2012; 51: 10181
    • 21c Huang W.-X, Yu C.-B, Ji Y, Liu L.-J, Zhou Y.-G. ACS Catal. 2016; 6: 2368
    • 21d Kita Y, Iimuro A, Hida S, Mashima K. Chem. Lett. 2014; 43: 284
  • 22 Liu Z.-Y, Wen Z.-H, Wang X.-C. Angew. Chem. Int. Ed. 2017; 56: 5817
  • 23 Tian J.-J, Yang Z.-Y, Liang X.-S, Liu N, Hu C.-Y, Tu X.-S, Li X, Wang X.-C. Angew. Chem. Int. Ed. 2020; 59: 18452
  • 24 Ishihara K. Achiral B(III) Lewis Acids . In Lewis Acids in Organic Synthesis . Yamamoto H. Wiley-VCH; Weinheim: 2000: 1
    • 25a Curti C, Battistini L, Sartori A, Zanardi F. Chem. Rev. 2020; 120: 2448
    • 25b Li H, Yin L. Tetrahedron Lett. 2018; 59: 4121
    • 25c Roselló MS, del Pozo C, Fustero S. Synthesis 2016; 48: 2553
    • 25d Martin SF. Acc. Chem. Res. 2002; 35: 895
    • 26a Wang QG, van Gemmeren M, List B. Angew. Chem. Int. Ed. 2014; 53: 13592
    • 26b Hayashi M, Sano M, Funahashi Y, Nakamura S. Angew. Chem. Int. Ed. 2013; 52: 5557
    • 26c Curti C, Battistini L, Ranieri B, Pelosi G, Rassu G, Casiraghi G, Zanardi F. J. Org. Chem. 2011; 76: 2248
    • 26d Zhang Q, Hui Y, Zhou X, Lin L, Liu X, Feng X. Adv. Synth. Catal. 2010; 352: 976
    • 26e Sickert M, Abels F, Lang M, Sieler J, Birkemeyer C, Schneider C. Chem. Eur. J. 2010; 16: 2806
    • 27a Trost BM, Gnanamani E, Tracy JS, Kalnmals CA. J. Am. Chem. Soc. 2017; 139: 18198
    • 27b Shepherd NE, Tanabe H, Xu Y, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 3666
    • 27c Liu T.-Y, Cui H.-L, Long J, Li B.-J, Wu Y, Ding L.-S, Chen Y.-C. J. Am. Chem. Soc. 2007; 129: 1878
    • 27d Zhong F, Yue W.-J, Zhang H.-J, Zhang C.-Y, Yin L. J. Am. Chem. Soc. 2018; 140: 15170
    • 27e Zhang H.-J, Shi C.-Y, Zhong F, Yin L. J. Am. Chem. Soc. 2017; 139: 2196
  • 28 Tian J.-J, Liu N, Liu Q.-F, Sun W, Wang X.-C. J. Am. Chem. Soc. 2021; 143: 3054
    • 29a Misale A, Niyomchon S, Maulide N. Acc. Chem. Res. 2016; 49: 2444
    • 29b Xu Y, Conner ML, Brown MK. Angew. Chem. Int. Ed. 2015; 54: 11918
    • 29c Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
    • 30a Enomoto K, Oyama H, Nakada M. Chem. Eur. J. 2015; 21: 2798
    • 30b Schotes C, Mezzetti A. Angew. Chem. Int. Ed. 2011; 50: 3072
    • 30c Ishihara K, Fushimi M. J. Am. Chem. Soc. 2008; 130: 7532
    • 30d Takenaka Y, Ito H, Hasegawa M, Iguchi K. Tetrahedron 2006; 62: 3380
    • 30e Narasaka K, Hayashi Y, Shimadzu H, Niihata S. J. Am. Chem. Soc. 1992; 114: 8869
  • 31 Zhang M, Wang X.-C. Angew. Chem. Int. Ed. 2021; 60: 17185