Synthesis
DOI: 10.1055/a-1703-6448
special topic
Cycloadditions – Established and Novel Trends – in Celebration of the 70th Anniversary of the Nobel Prize Awarded to Otto Diels and Kurt Alder

Ascending of Cycloaddition Strategy for N–O Heterocycles

Prasanjit Ghosh
,
Swati Lekha Mondal
,
Mahiuddin Baidya
P.G. acknowledges the Science and Engineering Research Board (SERB) for a NPDF (PDF/2017/000449) and S.M. also acknowledges the Council of Scientific and Industrial Research, India (CSIR) for a JRF. M.B. thanks the Indian Institute of Technology Madras (IIT-Madras) for Institute Research Development Award (IRDA) and funding support through IOE project grant.


Abstract

The N–O heterocycles are biologically relevant scaffolds and versatile building blocks in contemporary organic synthesis. In this short review, we showcase the involvement and elevation of various cycloaddition strategies towards the production of the N–O heterocycles; 1,2-oxazines and 1,2-oxazinanes, 1,2-oxazepanes, and 1,2-oxazetidines. An overview of the advantages and challenges associated with these synthetic endeavors is provided.

1 Introduction

2 Six-Membered N–O Heterocycles (1,2-Oxazines and 1,2-Oxazinanes)

3 Seven-Membered N–O Heterocycles (1,2-Oxazepanes)

4 Four-Membered N–O Heterocycles (1,2-Oxazetidines)

5 Summary and Outlook



Publication History

Received: 21 October 2021

Accepted after revision: 23 November 2021

Publication Date:
23 November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yamamoto H, Momiyama N. Chem. Commun. 2005; 3514
    • 1b Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 1c Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630
    • 1d Williamson KS, Michaelis DJ, Yoon TP. Chem. Rev. 2014; 114: 8016
    • 1e Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
    • 1f Giuseppe MG, Quadrelli P. Chem. Rev. 2017; 117: 2108
    • 1g Kang G, Park S, Han S. Eur. J. Org. Chem. 2021; 1508
    • 2a Koyoma K, Hirasawa Y, Nugroho AK, Hosoya T, Hoe TC, Chan K.-L, Morita H. Org. Lett. 2010; 12: 4188
    • 2b Lambert KM, Cox JB, Liu L, Jackson AC, Yruegas S, Wiberg KB, Wood JL. Angew. Chem. Int. Ed. 2020; 59: 9757
    • 2c Suzuki M, Kambe M, Tokuyama H, Fukuyama T. J. Org. Chem. 2004; 69: 2831
    • 2d Fukuyama T, Xu L, Goto S. J. Am. Chem. Soc. 1992; 114: 383
    • 2e Isshiki Y, Kohchi Y, Iikura H, Matsubara Y, Asoh K, Murata T, Kohchi M, Mizuguchi E, Tsujii S, Hattori K, Miura T, Yoshimura Y, Aida S, Miwa M, Saitoh R, Murao N, Okabe H, Belunis C, Janson C, Lukacs C, Schück V, Shimma N. Bioorg. Med. Chem. Lett. 2011; 21: 1795
    • 3a Lu M, Zhu D, Lu Y, Hou Y, Tan B, Zhong G. Angew. Chem. Int. Ed. 2008; 47: 10187
    • 3b Ramakrishna I, Ramaraju P, Baidya M. Org. Lett. 2018; 20: 1023
    • 4a Leach AG, Houk KN. J. Org. Chem. 2001; 66: 5192
    • 4b Leach AG, Houk KN. Chem. Commun. 2002; 1243
  • 5 Galvani G, Lett R, Kouklovsky C. Chem. Eur. J. 2013; 19: 15604
  • 6 Wichterle O. Collect. Czech. Chem. Commun. 1947; 12: 292
  • 7 Arbuzov YA. Dokl. Akad. Nauk SSSR 1948; 60: 993
  • 8 Kirby GW, Sweeny JG. J. Chem. Soc., Chem. Commun. 1973; 704
    • 9a Chaiyaveij D, Cleary L, Batsanov AS, Marder TB, Shea KJ, Whiting A. Org. Lett. 2011; 13: 3442
    • 9b Naruse M, Aayogi S, Kibayashi C. Tetrahedron Lett. 1994; 35: 9213
    • 10a Denmark SE, Dappen MS, Sternberg JA. J. Org. Chem. 1984; 49: 4741
    • 10b de los Santos JM, Ignacio R, Sbai ZE, Aparicio D, Palacios F. J. Org. Chem. 2014; 79: 7607
  • 11 Ji W, Li C.-L, Chen H, Yu Z.-X, Liao X. Chem. Commun. 2019; 55: 12012
  • 12 Ding X, Ukaji Y, Fujinami S, Inomata K. Chem. Lett. 2003; 32: 582
  • 13 Yamamoto Y, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 4128
  • 14 Jana CK, Studer A. Angew. Chem. Int. Ed. 2007; 46: 6542
  • 15 Jana CK, Studer A. Chem. Eur. J. 2008; 14: 6326
  • 16 Jana CK, Grimme S, Studer A. Chem. Eur. J. 2009; 15: 9078
  • 17 Maji B, Yamamoto H. J. Am. Chem. Soc. 2015; 137: 15957
  • 18 Li J, Tao H.-Y, Wang C.-J. Chem. Commun. 2017; 53: 1657
  • 19 Lu Y, Zhou Y, Zhang J, Lin L, Liu X, Feng X. Adv. Synth. Catal. 2017; 360: 186
  • 20 Pous J, Courant T, Bernadat G, Iorga BI, Blanchard F, Masson G. J. Am. Chem. Soc. 2015; 137: 11950
  • 21 Dumoulin A, Masson G. J. Org. Chem. 2016; 81: 10154
  • 22 Yamamoto Y, Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 5962
  • 23 Momiyama N, Yamamoto Y, Yamamoto H. J. Am. Chem. Soc. 2007; 129: 1190
  • 24 Chen C.-N, Liu R.-S. Angew. Chem. Int. Ed. 2019; 58: 9831
  • 25 Jadhav PJ, Chen J.-X, Liu R.-S. ACS Catal. 2020; 10: 5840
  • 26 Young IS, Kerr MA. Angew. Chem. Int. Ed. 2003; 42: 3023
  • 27 Young IS, Kerr MA. Org. Lett. 2004; 6: 139
  • 28 Ganton MD, Kerr MA. J. Org. Chem. 2004; 69: 8554
  • 29 Braun CM, Congdon EA, Nolin KA. J. Org. Chem. 2015; 80: 1979
  • 30 Sibi MP, Ma Z, Jasperse CP. J. Am. Chem. Soc. 2005; 127: 5764
  • 31 Kang Y.-B, Sun X.-L, Tang Y. Angew. Chem. Int. Ed. 2007; 46: 3918
  • 32 Zhang Y, Liu F, Zhang J. Chem. Eur. J. 2010; 16: 6146
  • 33 Hardman AM, So SS, Mattson AE. Org. Biomol. Chem. 2013; 11: 5793
  • 34 Cordier M, Archambeau A. Org. Lett. 2018; 20: 2265
  • 35 Hu L, Rombola M, Rawal VH. Org. Lett. 2018; 20: 5384
  • 36 Kumar P, Kumar R, Banerjee P. J. Org. Chem. 2020; 85: 6535
    • 37a Shintani R, Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
    • 37b Shintani R, Park S, Duan W.-L, Hayashi T. Angew. Chem. Int. Ed. 2007; 46: 5901
  • 38 Wang X, Fu X, Zavalij PF, Doyle MP. J. Am. Chem. Soc. 2011; 133: 16402
  • 39 Qian Y, Xu X, Wang X, Zavalij PJ, Hu W, Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 5900
  • 40 Xu X, Zavalij PJ, Doyle MP. Chem. Commun. 2013; 49: 10287
    • 41a Marichev KO, Adly FG, Carranco A, Garcia E, Arman HD, Doyle MP. ACS Catal. 2018; 8: 10392
    • 41b Zheng H, Faghihi I, Doyle MP. Helv. Chim. Acta 2021; 104: e2100081
  • 42 Liu F, Yu Y, Zhang J. Angew. Chem. Int. Ed. 2009; 48: 5505
  • 43 Liu F, Qian D, Li L, Zhao X, Zhang J. Angew. Chem. Int. Ed. 2010; 49: 6679
  • 44 Zhang Z.-M, Chen P, Li W, Niu Y, Zhao X.-L, Zhang J. Angew. Chem. Int. Ed. 2014; 53: 4350
  • 45 Yang W, Wang T, Yu Y, Shi S, Zhang T, Hashmi AS. K. Adv. Synth. Catal. 2013; 355: 1523
  • 46 Stevens AC, Palmer C, Pagenkopf BL. Org. Lett. 2011; 13: 1528
  • 47 Hu J.-L, Wang L, Xu H, Xie Z, Tang Y. Org. Lett. 2015; 17: 2680
  • 48 Shintani R, Murakami M, Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356
  • 49 Bai Y, Fang J, Ren J, Wang Z. Chem. Eur. J. 2009; 15: 8975
  • 50 Zhang Y, Zhang J. Chem. Commun. 2012; 48: 4710
  • 51 Zhang S, Tang A, Chen P, Zhao Z, Miao M, Ren H. Org. Lett. 2020; 22: 848
  • 52 Dochnahl M, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 2391
  • 53 Wang T, Huang X.-L, Ye S. Org. Biomol. Chem. 2010; 8: 5007
  • 54 Chatterjee I, Jana CK, Steinmetz M, Grimme S, Studer A. Adv. Synth. Catal. 2010; 352: 945
  • 55 Roy S, Kumar G, Chatterjee I. Org. Lett. 2021; 23: 6709
  • 56 Chen J.-X, Jadhav PD, Chen C.-N, Liu R.-S. Org. Lett. 2021; 23: 6246