Synthesis 2022; 54(09): 2165-2174
DOI: 10.1055/a-1710-7256
feature

Catalytic Amidomethylative [2+2+2] Cycloaddition of Formaldimine and Styrenes toward N-Heterocycles

Hetti Handi Chaminda Lakmal
,
Jacob Istre
,
Xiaolin Qian
,
,
Henry U. Valle
,
Xue Xu
,
Xin Cui
We are grateful for financial support from the National Science Foundation (CAREER: CHE-1945425), the Office of Research and Economic Development, Mississippi State University, and the Department of Chemistry, Mississippi State University.


This paper is dedicated to the 20th anniversary of the Professor Peter Zhang group.

Abstract

Chemo-switchable catalytic [2+2+2] cycloaddition of alkenes with formaldimines is reported. Bis(tosylamido)methane (BTM) and 1,2-ditosyl-1,2-diazetidine (DTD), two bench-stable precursors for highly reactive tosylformaldimine, have been identified to be effective. BTM worked as a selective releaser of the formaldimine for catalytic [2+2+2] reactions toward hexahydropyrimidine products via a presumable ‘imine–alkene–imine’ addition. A unique catalytic retro-[2+2] reaction of DTD was used and has enabled a proposed ‘imine–alkene–alkene’ pathway with high chemoselectivity for the synthesis of 2,4-di­arylpiperidine derivatives. The two alternative processes are catalyzed by the simple and environmentally benign catalysts InCl3 and FeBr2, respectively.

Supporting Information



Publikationsverlauf

Eingereicht: 15. Oktober 2021

Angenommen nach Revision: 01. Dezember 2021

Publikationsdatum:
01. Dezember 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 4 Comprehensive Organic Functional Group Transformations, 1st ed. Katritzky AR, Meth-Cohn O, Rees CW. Pergamon; Oxford/New York: 1995
    • 5a Noble A, Anderson JC. Chem. Rev. 2013; 113: 2887
    • 5b Candeias NR, Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
    • 5c Arrayás RG, Carretero JC. Chem. Soc. Rev. 2009; 38: 1940
    • 5d Verkade JM. M, van Hemert LJ. C, Quaedflieg PJ. L. M, Rutjes FP. J. T. Chem. Soc. Rev. 2008; 37: 29
    • 6a Snider BB. Prins Reactions and Carbonyl, Imine, and Thiocarbonyl Ene Reactions. In Comprehensive Organic Synthesis, 2nd ed., Vol. 2. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 91
    • 6b Eftekhari-Sis B, Zirak M. Chem. Rev. 2017; 117: 8326
    • 6c Pastor IM, Yus M. Curr. Org. Chem. 2012; 16: 1277
    • 6d Liu X, Zheng K, Feng X. Synthesis 2014; 46: 2241
    • 6e Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 6f Oliver LH, Puls LA, Tobey SL. Tetrahedron Lett. 2008; 49: 4636
    • 6g Juhl K, Gathergood N, Jørgensen KA. Angew. Chem. Int. Ed. 2001; 40: 2995
    • 6h Dias LC. Curr. Org. Chem. 2000; 4: 305
  • 7 Bloch R. Chem. Rev. 1998; 98: 1407
    • 8a Hoshimoto Y, Ohata T, Sasaoka Y, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15877
    • 8b Zhao P, Wang F, Han K, Li X. Org. Lett. 2012; 14: 5506
    • 8c Zhou C.-Y, Zhu S.-F, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2010; 132: 10955
    • 8d Skucas E, Kong JR, Krische MJ. J. Am. Chem. Soc. 2007; 129: 7242
    • 8e Ngai M.-Y, Barchuk A, Krische MJ. J. Am. Chem. Soc. 2007; 129: 12644
    • 8f Moslin RM, Miller-Moslin K, Jamison TF. Chem. Commun. 2007; 4441
    • 8g Barchuk A, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2007; 129: 8432
    • 8h Kong J.-R, Cho C.-W, Krische MJ. J. Am. Chem. Soc. 2005; 127: 11269
    • 8i Patel SJ, Jamison TF. Angew. Chem. Int. Ed. 2004; 43: 3941
    • 8j Patel SJ, Jamison TF. Angew. Chem. Int. Ed. 2003; 42: 1364
  • 9 Reichard HA, Micalizio GC. Chem. Sci. 2011; 2: 573
    • 10a Williams BM, Trauner D. Angew. Chem. Int. Ed. 2016; 55: 2191
    • 10b Ochi Y, Yokoshima S, Fukuyama T. Org. Lett. 2016; 18: 1494
    • 10c Bosque I, Gonzalez-Gomez JC, Loza MI, Brea J. J. Org. Chem. 2014; 79: 3982
    • 10d Bosque I, González-Gómez JC, Guijarro A, Foubelo F, Yus M. J. Org. Chem. 2012; 77: 10340
    • 10e Rouchaud A, Braekman JC. Eur. J. Org. Chem. 2009; 2666
    • 10f Cao MM, Zhang Y, Huang SD, Di YT, Peng ZG, Jiang JD, Yuan CM, Chen DZ, Li SL, He HP, Hao XJ. J. Nat. Prod. 2015; 78: 2609
    • 10g Tulyaganov TS, Nazarov OM. Chem. Nat. Compd. 2000; 36: 393
    • 10h Drandarov K, Guggisberg A, Hesse M. Helv. Chim. Acta 1999; 82: 229
    • 10i Satzinger G, Herrmann W, Zimmermann F. Hexetidine . In Analytical Profiles of Drug Substances, Vol. 7. Florey H. Academic Press; San Diego: 1978: 277-295
    • 11a Horvath D. J. Med. Chem. 1997; 40: 2412
    • 11b Khan MS. Y, Gupta M. Pharmazie 2002; 57: 377
    • 12a Trofimov BA, Shemyakina OA, Mal’kina AG, Stepanov AV, Volostnykh OG, Ushakov IA, Vashchenko AV. Eur. J. Org. Chem. 2016; 5465
    • 12b Reis MI. P, Campos VR, Resende JA. L. C, Silva FC, Ferreira VF. Beilstein J. Org. Chem. 2015; 11: 1235
    • 12c Palermo V, Sathicq Á, Constantieux T, Rodríguez J, Vázquez P, Romanelli G. Catal. Lett. 2015; 145: 1022
  • 13 Matton P, Huvelle S, Haddad M, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2022; 54: 4
    • 14a Brusoe AT, Alexanian EJ. Angew. Chem. Int. Ed. 2011; 50: 6596
    • 14b Brusoe AT, Edwankar RV, Alexanian EJ. Org. Lett. 2012; 14: 6096
    • 14c Martin TJ, Rovis T. Angew. Chem. Int. Ed. 2013; 52: 5368
    • 14d Yoshida T, Tajima Y, Kobayashi M, Masutomi K, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2015; 54: 8241
    • 14e Yu RT, Rovis T. J. Am. Chem. Soc. 2006; 128: 2782
    • 14f Zhang K, Louie J. J. Org. Chem. 2011; 76: 4686
    • 14g Domínguez G, Pérez-Castells J. Chem. Eur. J. 2016; 22: 6720
    • 15a Mori N, Ikeda SI, Sato Y. J. Am. Chem. Soc. 1999; 121: 2722
    • 15b Yoshikawa E, Yamamoto Y. Angew. Chem. Int. Ed. 2000; 39: 173
    • 15c Qiu Z, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 5729
    • 15d Miura T, Morimoto M, Murakami M. J. Am. Chem. Soc. 2010; 132: 15836
    • 15e Morimoto M, Nishida Y, Miura T, Murakami M. Chem. Lett. 2013; 42: 550
    • 16a Eichberg MJ, Dorta RL, Grotjahn DB, Lamottke K, Schmidt M, Vollhardt KP. C. J. Am. Chem. Soc. 2001; 123: 9324
    • 16b Petit M, Aubert C, Malacria M. Org. Lett. 2004; 6: 3937
    • 16c Hilt G, Paul A, Harms K. J. Org. Chem. 2008; 73: 5187
    • 17a Hoberg H, Bärhausen D, Mynott R, Schroth G. J. Organomet. Chem. 1991; 410: 117
    • 17b Hoberg H, Guhl D. J. Organomet. Chem. 1989; 375: 245
    • 17c Amatore M, Aubert C. Eur. J. Org. Chem. 2015; 265
    • 17d Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 17e Galan BR, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
    • 17f Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
  • 18 Zhou H, Chaminda Lakmal HH, Baine JM, Valle HU, Xu X, Cui X. Chem. Sci. 2017; 8: 6520
    • 19a Katamura T, Shimizu T, Mutoh Y, Saito S. Org. Lett. 2017; 19: 266
    • 19b Daniels BE, Ni J, Reisman SE. Angew. Chem. Int. Ed. 2016; 55: 3398
    • 19c Barbero A, Diez-Varga A, Pulido FJ, González-Ortega A. Org. Lett. 2016; 18: 1972
    • 19d Kaphan DM, Toste FD, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2015; 137: 9202
    • 19e Olier C, Kaafarani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
    • 19f Dobbs AP, Guesné SJ. J, Parker RJ, Skidmore J, Stephenson RA, Hursthouse MB. Org. Biomol. Chem. 2010; 8: 1064
  • 20 Subba Reddy BV, Nair PN, Antony A, Lalli C, Grée R. Eur. J. Org. Chem. 2017; 1805
  • 21 Kinoshita H, Ingham OJ, Ong WW, Beeler AB, Porco JA. J. Am. Chem. Soc. 2010; 132: 6412
  • 22 Li Z.-Y, Chaminda Lakmal HH, Cui X. Org. Lett. 2019; 21: 3735
  • 23 Qian X, Zhou H, Chaminda Lakmal HH, Lucore J, Wang X, Valle HU, Donnadieu B, Xu X, Cui X. ACS Catal. 2020; 10: 10627
  • 24 Chaminda Lakmal HH, Xu JX, Xu X, Ahmed B, Fong C, Szalda DJ, Ramig K, Sygula A, Webster CE, Zhang D, Cui X. J. Org. Chem. 2018; 83: 9497