Synthesis
DOI: 10.1055/a-1711-5889
special topic
Bürgenstock Special Section 2021 – Future Stars in Organic Chemistry

Recent Trends in Group 9 Catalyzed C–H Borylation Reactions: Different Strategies To Control Site-, Regio-, and Stereoselectivity

Lukas Veth
,
Hanusch A. Grab
,
This work was financially supported by the European Research Council (ERC StG ‘Reverse&Cat’ #804106) and the Agence Nationale de la Recherche (ANR IdEx ‘Chaire attractivité’ 2016, ANR LabEx ‘Chemistry of Complex Systems’ 2017 & 2018).


Abstract

Organoboron compounds continue contributing substantially to advances in organic chemistry with their increasing role as both synthetic intermediates and target compounds for medicinal chemistry. Particularly attractive methods for their synthesis are based on the direct borylation of C–H bonds of available starting materials since no additional pre-functionalization steps are required. However, due to the high abundance of C–H bonds with similar reactivity in organic molecules, synthetically useful C–H borylation protocols demand sophisticated strategies to achieve high regio- and stereoselectivity. For this purpose, selective transition-metal-based catalysts have been developed, with group 9 centered catalysts being among the most commonly utilized. Recently, a multitude of diverse strategies has been developed to push the boundaries of C–H borylation reactions with respect to their regio- and enantioselectivity. Herein, we provide an overview of approaches for the C–H borylation of arenes, alkenes, and alkanes based on group 9 centered catalysts with a focus on the recent literature. Lastly, an outlook is given to assess the future potential of the field.

1 Introduction

1.1 Mechanistic Considerations

1.2 Selectivity Issues in C–H Borylation

1.3 Different Modes of Action Employing Directing Group Strategies in C–H Borylation

1.4 Scope and Aim of this Short Review

2 Trends in C–H Borylation Reactions

2.1 Photoinduced Catalysis

2.2 Transfer C–H Borylation

2.3 Lewis Acid Mediated C–H Borylation

2.4 Directed Metalation

2.5 Miscellaneous C–H Borylation Reactions

2.6 Electrostatic Interactions

2.7 Hydrogen Bonding

3 Conclusion and Outlook



Publication History

Received: 14 October 2021

Accepted after revision: 02 December 2021

Publication Date:
02 December 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Chow WK, Yuen OY, Choy PY, So CM, Lau CP, Wong WT, Kwong FY. RSC Adv. 2013; 3: 12518
    • 1b Murata M. Heterocycles 2012; 85: 1795
    • 1c Carreras J, Caballero A, Pérez PJ. Chem. Asian J. 2019; 14: 329
    • 1d Molander GA, Sandrock DL. Curr. Opin. Drug Discovery Dev. 2009; 12: 811
    • 2a Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 2b Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 2c Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
    • 3a Hartwig JF. Acc. Chem. Res. 2012; 45: 865
    • 3b Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
    • 3c Synthesis and Application of Organoboron Compounds . In Topics in Organometallic Chemistry, Vol. 49. Fernández E, Whiting A. Springer International; Switzerland: 2015
    • 4a Woźniak Ł, Tan JF, Nguyen QH, Madron Du Vigné A, Smal V, Cao YX, Cramer N. Chem. Rev. 2020; 120: 10516
    • 4b Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Org. Biomol. Chem. 2019; 17: 10119
    • 4c Achar TK, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
    • 4d Baudoin O. Angew. Chem. Int. Ed. 2020; 59: 17798
    • 4e Liao G, Zhang T, Lin ZK, Shi BF. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 5a Waltz KM, He X, Muhoro C, Hartwig JF. J. Am. Chem. Soc. 1995; 117: 11357
    • 5b Waltz KM, Hartwig JF. Science 1997; 277: 211
    • 5c Chen H, Hartwig JF. Angew. Chem. Int. Ed. 1999; 38: 3391
  • 6 Iverson CN, Smith III. MR. J. Am. Chem. Soc. 1999; 121: 7696
  • 7 Cho JY, Tse MK, Holmes D, Maleczka RE. Jr, Smith MR. III. Science 2002; 295: 305
    • 8a Chen H, Schlecht S, Semple TC, Hartwig JF. Science 2000; 287: 1995
    • 8b Yang J. Org. Biomol. Chem. 2015; 13: 1930
    • 8c Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
    • 8d Ishiyama T, Takagi J, Hartwig JF, Miyaura N. Angew. Chem. Int. Ed. 2002; 41: 3056
    • 8e Cho JY, Iverson CN, Smith III. MR. J. Am. Chem. Soc. 2000; 122: 12868
    • 9a Su B, Cao ZC, Shi ZJ. Acc. Chem. Res. 2015; 48: 886
    • 9b Obligacion JV, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2014; 136: 4133
    • 9c Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 9d Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 10 Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
  • 11 Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
  • 12 Tajuddin H, Harrisson P, Bitterlich B, Collings JC, Sim N, Batsanov AS, Cheung MS, Kawamorita S, Maxwell AC, Shukla L, Morris J, Lin Z, Marder TB, Steel PG. Chem. Sci. 2012; 3: 3505
  • 13 Kruse T, Hansen MK, Münzel MW. B, Thogersen H, Sauerberg P, Rasmussen JE, Behrens C, Hoeg-Jensen T, Balsanek V, Drob-Nakova Z, Droz L, Havranek M, Kotek V, Stengl M, Snajdr I, Vanova H. WO 2019092125, 2019
  • 14 Ros A, Fernández R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
  • 15 Roosen PC, Kallepalli VA, Chattopadhyay B, Singleton DA, Maleczka RE. Jr, Smith MR. III. J. Am. Chem. Soc. 2012; 134: 11350
  • 16 Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 7534
    • 17a Reyes R, Sawamura M. Kimika 2021; 32: 70
    • 17b Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
    • 17c Dutta U, Maiti S, Bhattacharya T, Maiti D. Science 2021; 372: eabd5992
    • 17d Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
    • 17e Meng G, Lam NY. S, Lucas EL, Saint-Denis TG, Verma P, Chekshin N, Yu JQ. J. Am. Chem. Soc. 2020; 142: 10571
    • 17f Niu B, Yang K, Lawrence B, Ge H. ChemSusChem 2019; 12: 2955
    • 17g Trouvé J, Gramage-Doria R. Chem. Soc. Rev. 2021; 50: 3565
    • 17h Kuninobu Y, Torigoe T. Org. Biomol. Chem. 2020; 18: 4126
    • 17i Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864
    • 17j Kuroda Y, Nakao Y. Chem. Lett. 2019; 48: 1092
  • 18 Pell CJ, Ozerov OV. J. Organomet. Chem. 2020; 912: 121143
    • 19a Wright JS, Scott PJ. H, Steel PG. Angew. Chem. Int. Ed. 2021; 60: 2796
    • 19b Primas N, Bouillon A, Rault S. Tetrahedron 2010; 66: 8121
    • 19c Trouvé J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Angew. Chem. Int. Ed. 2021; 60: 18006
    • 19d Larsen MA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
  • 20 Huang Z, Dong G. Acc. Chem. Res. 2017; 50: 465
    • 21a Cheng WM, Shang R. ACS Catal. 2020; 10: 9170
    • 21b Revathi L, Ravindar L, Fang WY, Rakesh KP, Qin HL. Adv. Synth. Catal. 2018; 360: 4652
    • 21c Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
    • 21d Pak K, Cheung S, Sarkar S, Gevorgyan V. Chem. Rev. 2021; in press DOI: 10.1021/acs.chemrev.1c00403.
  • 22 Thongpaen J, Manguin R, Dorcet V, Vives T, Duhayon C, Mauduit M, Baslé O. Angew. Chem. Int. Ed. 2019; 58: 15244
  • 23 Tanaka J, Nagashima Y, Araujo Dias AJ, Tanaka K. J. Am. Chem. Soc. 2021; 143: 11325
  • 24 Murata M, Watanabe S, Masuda Y. Tetrahedron Lett. 1999; 40: 2585

    • Many more reports established the use of other complexes including those based on more abundant metals, e.g., Fe, Cu, or Zr:
    • 25a Wang C, Wu C, Ge S. ACS Catal. 2016; 6: 7585
    • 25b Mazzacano TJ, Mankad NP. ACS Catal. 2017; 7: 146
    • 25c Shi X, Li S, Wu L. Angew. Chem. Int. Ed. 2019; 58: 16167
  • 26 Transfer C–H borylation has been described earlier with Ru- and Zr-hydride complexes, albeit with rather limited functional group tolerance: Marciniec B, Jankowska M, Pietraszuk C. Chem. Commun. 2005; 663
  • 27 Veth L, Grab HA, Martínez S, Antheaume C, Dydio P. ChemRxiv 2021; preprint; DOI: 10.33774/chemrxiv-2021-0qqwv.
    • 28a Bhawal BN, Morandi B. ACS Catal. 2016; 6: 7528
    • 28b Bhawal BN, Morandi B. Chem. Eur. J. 2017; 23: 12004
    • 28c Bhawal BN, Morandi B. Angew. Chem. Int. Ed. 2019; 58: 10074
  • 29 It is also scarce for other metals: Miyaura N, Suzuki A. J. Organomet. Chem. 1981; 213: 53
    • 30a Sasmal S, Dutta U, Lahiri GK, Maiti D. Chem. Lett. 2020; 49: 1406
    • 30b Bouhadir G, Bourissou D. Chem. Soc. Rev. 2016; 45: 1065
    • 30c Kanai M, Kato N, Ichikawa E, Shibasaki M. Synlett 2005; 1491
    • 31a Mihai MT, Genov GR, Phipps RJ. Chem. Soc. Rev. 2018; 47: 149
    • 31b Ali R, Siddiqui R. Adv. Synth. Catal. 2021; 363: 1290
    • 32a Yang L, Uemura N, Nakao Y. J. Am. Chem. Soc. 2019; 141: 7972
    • 32b Yang L, Semba K, Nakao Y. Angew. Chem. Int. Ed. 2017; 56: 4853
    • 33a Li HL, Kuninobu Y, Kanai M. Angew. Chem. Int. Ed. 2017; 56: 1495
    • 33b Hoque ME, Bisht R, Haldar C, Chattopadhyay B. J. Am. Chem. Soc. 2017; 139: 7745
    • 33c Bisht R, Hoque ME, Chattopadhyay B. Angew. Chem. Int. Ed. 2018; 57: 15762
    • 33d Bisht R, Chattopadhyay B. J. Am. Chem. Soc. 2016; 138: 84
  • 34 Nakamura T, Suzuki K, Yamashita M. J. Am. Chem. Soc. 2017; 139: 17763
    • 35a Auth MR, McGarry KA, Clark TB. Adv. Synth. Catal. 2021; 363: 2354
    • 35b Haldar C, Emdadul Hoque M, Bisht R, Chattopadhyay B. Tetrahedron Lett. 2018; 59: 1269
    • 35c Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 35d Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 10: 12898
    • 35e Zheng Q, Liu CF, Chen J, Rao GW. Adv. Synth. Catal. 2020; 362: 1406
  • 36 Tang J, Singh T, Li X, Liu L, Zhou T. J. Org. Chem. 2020; 85: 11959
  • 37 Zeng J, Naito M, Torigoe T, Yamanaka M, Kuninobu Y. Org. Lett. 2020; 22: 3485
  • 38 Wen J, Wang D, Qian J, Wang D, Zhu C, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 2078
  • 39 Fukuda K, Iwasawa N, Takaya J. Angew. Chem. Int. Ed. 2019; 58: 2850
  • 40 Xu F, Duke OM, Rojas D, Eichelberger HM, Kim RS, Clark TB, Watson DA. J. Am. Chem. Soc. 2020; 142: 11988
  • 41 Doherty S, Knight JG, Ward NA. B, Perry DO, Bittner DM, Probert MR, Westcott SA. Organometallics 2014; 33: 5209
  • 42 Jiao J, Nie W, Song P, Li P. Org. Biomol. Chem. 2021; 19: 355
    • 43a Ishiyama T, Isou H, Kikuchi T, Miyaura N. Chem. Commun. 2010; 46: 159
    • 43b Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M. J. Am. Chem. Soc. 2009; 131: 6170
    • 43c Ghaffari B, Preshlock SM, Plattner DL, Staples RJ, Maligres PE, Krska SW, Maleczka Jr. RE, Smith III. MR. J. Am. Chem. Soc. 2014; 136: 14345
  • 44 Cook AK, Schimler SD, Matzger AJ, Sanford MS. Science 2016; 351: 1421
  • 45 Jiang Q, Duan-Mu D, Zhong W, Chen H, Yan H. Chem. Eur. J. 2013; 19: 1903
  • 46 Thongpaen J, Schmid TE, Toupet L, Dorcet V, Mauduit M, Baslé O. Chem. Commun. 2018; 54: 8202
  • 47 Yang Y, Gao Q, Xu S. Adv. Synth. Catal. 2019; 361: 858
    • 48a Wang G, Liu L, Wang H, Ding YS, Zhou J, Mao S, Li P. J. Am. Chem. Soc. 2017; 139: 91
    • 48b Ros A, Estepa B, López-Rodríguez R, Álvarez E, Fernández R, Lassaletta JM. Angew. Chem. Int. Ed. 2011; 50: 11724
    • 48c Kawamorita S, Miyazaki T, Ohmiya H, Iwai T, Sawamura M. J. Am. Chem. Soc. 2011; 133: 19310
  • 49 Hassan MM. M, Hoque ME, Dey S, Guria S, Roy B, Chattopadhyay B. Synthesis 2021; 53: 3333
  • 50 Bisht R, Chattopadhyay B. Synlett 2016; 27: 2043
  • 51 Hoque ME, Hassan MM. M, Chattopadhyay B. J. Am. Chem. Soc. 2021; 143: 5022
  • 52 He J, Shao Q, Wu Q, Yu JQ. J. Am. Chem. Soc. 2017; 139: 3344
  • 53 Su B, Zhou TG, Xu PL, Shi ZJ, Hartwig JF. Angew. Chem. Int. Ed. 2017; 56: 7205
  • 54 Zou X, Zhao H, Li Y, Gao Q, Ke Z, Xu S. J. Am. Chem. Soc. 2019; 141: 5334
    • 55a Park D, Baek D, Lee CW, Ryu H, Park S, Han W, Hong S. Tetrahedron 2021; 79: 131811
    • 55b Song P, Hu L, Yu T, Jiao J, He Y, Xu L, Li P. ACS Catal. 2021; 11: 7339
  • 56 Su B, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 10163
  • 57 Shi Y, Gao Q, Xu S. J. Am. Chem. Soc. 2019; 141: 10599
  • 58 Chen L, Yang Y, Liu L, Gao Q, Xu S. J. Am. Chem. Soc. 2020; 142: 12062
  • 59 Du R, Liu L, Xu S. Angew. Chem. Int. Ed. 2021; 60: 5843
  • 60 Yang Y, Chen L, Xu S. Angew. Chem. Int. Ed. 2021; 60: 3524
  • 61 Shi Y, Gao Q, Xu S. Synlett 2019; 30: 2107
  • 62 Reyes RL, Iwai T, Maeda S, Sawamura M. J. Am. Chem. Soc. 2019; 141: 6817
  • 63 Reyes RL, Sato M, Iwai T, Sawamura M. J. Am. Chem. Soc. 2020; 142: 589
  • 64 Yamamoto T, Ishibashi A, Suginome M. Org. Lett. 2019; 21: 6235
    • 65a Shimizu M, Hiyama T. Proc. Jpn. Acad., Ser. B 2008; 84: 75
    • 65b Nallagonda R, Padala K, Masarwa A. Org. Biomol. Chem. 2018; 16: 1050
    • 66a Obligacion JV, Bezdek MJ, Chirik PJ. J. Am. Chem. Soc. 2017; 139: 2825
    • 66b Robbins DW, Hartwig JF. Org. Lett. 2012; 14: 4266
    • 66c Jayasundara CR. K, Unold JM, Oppenheimer J, Smith III. MR, Maleczka Jr. RE. Org. Lett. 2014; 16: 6072
    • 66d Pabst TP, Obligacion JV, Rochette É, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2019; 141: 15378
    • 66e Miller SL, Chotana GA, Fritz JA, Chattopadhyay B, Maleczka Jr. RE, Smith III. MR. Org. Lett. 2019; 21: 6388
  • 67 Kuleshova O, Asako S, Ilies L. ACS Catal. 2021; 11: 5968
    • 68a Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 12422
    • 68b Ohmura T, Torigoe T, Suginome M. Chem. Commun. 2014; 50: 6333
    • 68c Lawrence JD, Takahashi M, Bae C, Hartwig JF. J. Am. Chem. Soc. 2004; 126: 15334
    • 68d Li Q, Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 8755
    • 68e Ohmura T, Torigoe T, Suginome M. Organometallics 2013; 32: 6170
  • 69 Jones MR, Fast CD, Schley ND. J. Am. Chem. Soc. 2020; 142: 6488
  • 70 Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
  • 71 Wei CS, Jiménez-Hoyos CA, Videa MF, Hartwig JF, Hall MB. J. Am. Chem. Soc. 2010; 132: 3078
  • 72 Zhong RL, Sakaki S. J. Am. Chem. Soc. 2019; 141: 9854
    • 73a Léonard NG, Bezdek MJ, Chirik PJ. Organometallics 2017; 36: 142
    • 73b Obligacion JV, Semproni SP, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 10645
    • 73c Palmer WN, Obligacion JV, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 766
  • 74 Pabst TP, Quach L, MacMillan KT, Chirik PJ. Chem 2021; 7: 237
  • 75 Saito Y, Yamanoue K, Segawa Y, Itami K. Chem 2020; 6: 985
  • 76 Chakravarti RN, Robinson R. J. Chem. Soc. 1947; 78
  • 77 Saito Y, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 5193
    • 78a Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 78b Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
    • 78c Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
  • 79 Davis HJ, Mihai MT, Phipps RJ. J. Am. Chem. Soc. 2016; 138: 12759
  • 80 Mihai MT, Davis HJ, Genov GR, Phipps RJ. ACS Catal. 2018; 8: 3764
  • 81 Davis HJ, Genov GR, Phipps RJ. Angew. Chem. Int. Ed. 2017; 56: 13351
  • 82 Lee B, Mihai MT, Stojalnikova V, Phipps RJ. J. Org. Chem. 2019; 84: 13124
  • 83 Dey A, Maity S, Maiti D. Chem. Commun. 2016; 52: 12398
  • 84 Mihai MT, Williams BD, Phipps RJ. J. Am. Chem. Soc. 2019; 141: 15477
  • 85 Montero Bastidas JR, Oleskey TJ, Miller SL, Smith III. MR, Maleczka Jr. RE. J. Am. Chem. Soc. 2019; 141: 15483
  • 86 Chattopadhyay B, Dannatt JE, Andujar-De Sanctis IL, Gore KA, Maleczka RE. Jr, Singleton DA, Smith MR. III. J. Am. Chem. Soc. 2017; 139: 7864
  • 87 Smith III. MR, Bisht R, Haldar C, Pandey G, Dannatt JE, Ghaffari B, Maleczka Jr. RE, Chattopadhyay B. ACS Catal. 2018; 8: 6216
    • 88a Preshlock SM, Plattner DL, Maligres PE, Krska SW, Maleczka Jr. RE, Smith III. MR. Angew. Chem. Int. Ed. 2013; 52: 12915
    • 88b Bisht R, Chaturvedi J, Pandey G, Chattopadhyay B. Org. Lett. 2019; 21: 6476
  • 89 Chaturvedi J, Haldar C, Bisht R, Pandey G, Chattopadhyay B. J. Am. Chem. Soc. 2021; 143: 7604
  • 90 Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712
  • 91 Lu X, Yoshigoe Y, Ida H, Nishi M, Kanai M, Kuninobu Y. ACS Catal. 2019; 9: 1705
  • 92 Wang J, Torigoe T, Kuninobu Y. Org. Lett. 2019; 21: 1342
  • 93 Reyes RL, Sato M, Iwai T, Suzuki K, Maeda S, Sawamura M. Science 2020; 369: 970
  • 94 Bai ST, Bheeter CB, Reek JN. H. Angew. Chem. Int. Ed. 2019; 58: 13039
  • 95 Genov GR, Douthwaite JL, Lahdenperä AS. K, Gibson DC, Phipps RJ. Science 2020; 367: 1246