Synthesis 2022; 54(08): 1964-1976
DOI: 10.1055/a-1715-7413
short review

Recent Advances in Decarboxylative Conversions of Cyclic Carbonates and Beyond

Biwei Yan
,
Wusheng Guo


Abstract

In recent years, functionalized cyclic organic carbonates have emerged as valuable building blocks for the construction of interesting and useful molecules upon decarboxylation under transition-metal catalysis. By employing suitable catalytic systems, the development of chemo-, regio-, stereo- and enantioselective methods for the synthesis of useful and interesting compounds has advanced greatly. On the basis of previous research on this topic, this short review highlights the synthetic potential of cyclic carbonates under transition-metal catalysis over the last two years.

1 Introduction

2 Transition-Metal-Catalyzed Decarboxylation of Vinyl Cyclic Carbonates

3 Zwitterionic Enolate Chemistry Based On Transition-Metal Catalysis

4 Decarboxylation of Alkynyl Cyclic Carbonates and Dioxazolones

5 Conclusions and Perspectives



Publication History

Received: 10 November 2021

Accepted after revision: 07 December 2021

Accepted Manuscript online:
07 December 2021

Article published online:
15 February 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Guo W, Gómez JE, Cristòfol À, Xie J, Kleij AW. Angew. Chem. Int. Ed. 2018; 57: 13735
    • 1b Zuo L, Liu T, Chang X, Guo W. Molecules 2019; 24: 3930
  • 2 Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat. Catal. 2020; 3: 48
  • 3 Yang G, Ke Y.-M, Zhao Y. Angew. Chem. Int. Ed. 2021; 60: 12775
  • 4 Gao X, Zhu D, Jiang F, Liao J, Wang W, Wu Y, Zheng L, Guo H. Org. Biomol. Chem. 2021; 19: 4877
  • 5 Gao X, Zhu D, Chen Y, Deng H, Jiang F, Wang W, Wu Y, Guo H. Org. Lett. 2020; 22: 7158
  • 6 Ismail SN. F. B. S, Yang B, Zhao Y. Org. Lett. 2021; 23: 2884
  • 7 Lee KR, Ahn S, Lee S. Org. Lett. 2021; 23: 3735
  • 8 Zhang X, Li X, Li J.-L, Wang Q.-W, Zou W.-L, Liu Y.-Q, Jia Z.-Q, Peng F, Han B. Chem. Sci. 2020; 11: 2888
  • 9 Dai Q.-S, Tao Y.-M, Zhang X, Leng H.-J, Huang H, Xiang P, Li Q.-Z, Wang Q.-W, Li J.-L. Chem. Commun. 2020; 56: 12439
  • 10 Huang Q.-W, Qi T, Liu Y, Zhang X, Li Q.-Z, Gou C, Tao Y.-M, Leng H.-J, Li J.-L. ACS Catal. 2021; 11: 10148
    • 11a Xiao L, Wei L, Wang C.-J. Angew. Chem. Int. Ed. 2021; 60: 24930
    • 11b Hoffmann HM. R, Rabe J. Angew. Chem., Int. Ed. Engl. 1985; 24: 94
    • 11c Chiyoda K, Shimokawa J, Fukuyama T. Angew. Chem. Int. Ed. 2012; 51: 2505
    • 11d Kumazaki H, Nakajima R, Bessho Y, Yokoshima S, Fukuyama T. Synlett 2015; 26: 2131
  • 12 Pan T, Gao X, Yang S, Wang L, Hu Y, Liu M, Wang W, Wu Y, Zheng B, Guo H. Org. Lett. 2021; 23: 5750
    • 13a Trost BM, Granja JR. Tetrahedron Lett. 1991; 32: 2193
    • 13b Mizojiri R, Kobayashi Y. J. Chem. Soc., Perkin Trans. 1 1995; 2073
    • 13c Rang S.-K, Kim S.-G, Lee J.-S. Tetrahedron: Asymmetry 1992; 3: 1139
  • 14 Khan A, Zhao H, Zhang M, Khan S, Zhao D. Angew. Chem. Int. Ed. 2020; 59: 1340
  • 15 Cai A, Kleij AW. Angew. Chem. Int. Ed. 2019; 58: 14944
  • 16 Song B, Xie P, Li Y, Hao J, Wang L, Chen X, Xu Z, Quan H, Lou L, Xia Y, Houk KN, Yang W. J. Am. Chem. Soc. 2020; 142: 9982
  • 17 Huang Y, Ma C, Liu S, Yang L.-C, Lan Y, Zhao Y. Chem 2021; 7: 812
  • 18 Cristòfol À, Limburg B, Kleij AW. Angew. Chem. Int. Ed. 2021; 60: 15266
  • 19 Xue S, Limburg B, Ghorai D, Benet-Buchholz J, Kleij AW. Org. Lett. 2021; 23: 4447
    • 20a Malde AK, Hill TA, Iyer A, Fairlie DP. Chem. Rev. 2019; 119: 9861
    • 20b Hu Y.-J, Li L.-X, Han J.-C, Min L, Li C.-C. Chem. Rev. 2020; 120: 5910
  • 21 Yan B, Zuo L, Chang X, Liu T, Cui M, Liu Y, Sun H, Chen W, Guo W. Org. Lett. 2021; 23: 351
  • 22 Zheng Y, Qin T, Zi W. J. Am. Chem. Soc. 2021; 143: 1038
  • 23 Trost BM, Huang Z, Murhade GM. Science 2018; 362: 564
  • 24 Zuo L, Ma P, Liu T, Chen X, Lavroff RH, Chen W, Houk KN, Guo W. Org. Lett. 2021; 23: 7330
  • 25 Liu T, Fang Y, Zuo L, Yang Y, Liu Y, Chen W, Dang L, Guo W. Org. Chem. Front. 2021; 8: 1902
  • 26 Liu Y, He Y, Liu Y, Wei K, Guo W. Org. Chem. Front. 2021; 8: 7004
  • 27 Zuo L, Yang Y, Guo W. Org. Lett. 2021; 23: 2013
  • 28 Yang Y, Zuo L, Wei K, Guo W. Org. Lett. 2021; 23: 3195
  • 29 Guo W, Martínez-Rodríguez L, Martin E, Escudero-Adán EC, Kleij AW. Angew. Chem. Int. Ed. 2016; 55: 11037
  • 30 Guo W, Zuo L, Cui M, Yan B, Ni S. J. Am. Chem. Soc. 2021; 143: 7629

    • For selected references, please refer to:
    • 31a Nakajima K, Shibata M, Nishibayashi Y. J. Am. Chem. Soc. 2015; 137: 2472
    • 31b Tsuchida K, Senda Y, Nakajima K, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 9728
  • 32 Chai W, Zhou Q, Ai W, Zheng Y, Qin T, Xu X, Zi W. J. Am. Chem. Soc. 2021; 143: 3595
    • 33a Zhu F.-L, Zou Y, Zhang D.-Y, Wang Y.-H, Hu X.-H, Chen S, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 1410
    • 33b Shao W, Li H, Liu C, Liu C.-J, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 7684
    • 33c Shao L, Wang Y.-H, Zhang D.-Y, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2016; 55: 5014
    • 33d Xia J.-T, Li L, Hu X.-P. ACS Catal. 2021; 11: 11843
    • 34a Tian L, Gong L, Zhang X. Adv. Synth. Catal. 2018; 360: 2055
    • 34b Gómez JE, Cristòfol À, Kleij AW. Angew. Chem. Int. Ed. 2019; 58: 3903
    • 34c Lu W.-Y, You Y, Li T.-T, Wang Z.-H, Zhao J.-Q, Yuan W.-C. J. Org. Chem. 2021; 86: 6711
    • 35a Wang Q, Li T.-R, Lu L.-Q, Li M.-M, Zhang K, Xiao W.-J. J. Am. Chem. Soc. 2016; 138: 8360
    • 35b Li T.-R, Cheng B.-Y, Wang Y.-N, Zhang M.-M, Lu L-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2016; 55: 12422
    • 35c Li T.-R, Lu L.-Q, Wang Y.-N, Wang B.-C, Xiao W.-J. Org. Lett. 2017; 19: 4098
    • 35d Li T.-R, Zhang M.-M, Wang B.-C, Lu L.-Q, Xiao W.-J. Org. Lett. 2018; 20: 3237
    • 35e Wang B.-C, Wang Y.-N, Zhang M.-M, Xiao W.-J, Lu L.-Q. Chem. Commun. 2018; 54: 3154
  • 36 Guo K, Kleij AW. Org. Lett. 2020; 22: 3942
  • 37 Guo K, Kleij AW. Angew. Chem. Int. Ed. 2021; 60: 4901
  • 38 Pei G, Chen H, Xu W, Chen T, Li J. Org. Chem. Front. 2021; 8: 6950
    • 40a Park Y, Park KT, Kim JG, Chang S. J. Am. Chem. Soc. 2015; 137: 4534
    • 40b Park Y, Heo J, Baik M.-H, Chang S. J. Am. Chem. Soc. 2016; 138: 14020
    • 40c Hong SY, Park Y, Hwang Y, Kim YB, Baik M.-H, Chang S. Science 2018; 359: 1016
  • 41 Kim S, Kim D, Hong SY, Chang S. J. Am. Chem. Soc. 2021; 143: 3993
  • 42 Lee E, Hwang Y, Kim YB, Kim D, Chang S. J. Am. Chem. Soc. 2021; 143: 6363
  • 43 Lyu X, Zhang J, Kim D, Seo S, Chang S. J. Am. Chem. Soc. 2021; 143: 5867
  • 44 Wang H, Jung H, Song F, Zhu S, Bai Z, Chen D, He G, Chang S, Chen G. Nat. Chem. 2021; 13: 378
  • 45 Tang J.-J, Yu X, Wang Y, Yamamoto Y, Bao M. Angew. Chem. Int. Ed. 2021; 60: 16426