Synthesis 2022; 54(11): 2585-2594
DOI: 10.1055/a-1748-6564
feature

Addition/Substitution Approach of TsNHCH2SiMe2CH2Cl with Isocyanates or Isothiocyanates To Construct 1,3,5-Diazasilinan-2-ones or 1,3,5-Thiazasilinan-2-imines

Yi Li
,
Tianbao Hu
,
Lu Gao
,
Zhenlei Song
We are grateful for the financial support from the National Natural Science Foundation of China (21921002, 22171191), the Open Research Fund of Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China (2020LF2003), and the Science and Technology Department of Sichuan Province (2020YFS0186).


Abstract

TsNHCH2SiMe2CH2Cl has been exploited as a 1,4-dipole synthon for the synthesis of 1,3,5-diazasilinan-2-ones by a sequential N-addition/N-substitution process with isocyanates, or for the synthesis of 1,3,5-thiazasilinan-2-imines with isothiocyanates by a sequential N-addition/S-substitution process.

Supporting Information



Publication History

Received: 31 December 2021

Accepted after revision: 24 January 2022

Accepted Manuscript online:
24 January 2022

Article published online:
03 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Serafini M, Cargnin S, Massarotti A, Tron GC, Pirali T, Genazzani AA. J. Med. Chem. 2021; 64: 4410
    • 1b Perestelo NR, Llanos GG, Reyes CP, Amesty A, Sooda K, Afshinjavid S, Jiménez IA, Javid F, Bazzocchi IL. J. Med. Chem. 2019; 62: 4571
    • 1c Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
    • 1d Fujii S, Hashimoto Y. Future Med. Chem. 2017; 9: 485
    • 1e Rémond E, Martin C, Martinez J, Cavelier F. Chem. Rev. 2016; 116: 11654
    • 1f Lazareva NF, Lazarev IM. Russ. Chem. Bull. 2015; 64: 1221
    • 1g Tacke R, Dörrich S. Top. Med. Chem. 2014; 17: 29
    • 1h Sieburth SM. Top. Med. Chem. 2014; 17: 61
    • 1i Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
    • 1j Min GK, Hernández D, Skrydstrup T. Acc. Chem. Res. 2013; 46: 457
    • 1k Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 1l Mortensen M, Husmann R, Veri E, Bolm C. Chem. Soc. Rev. 2009; 38: 1002
    • 1m Gately S, West R. Drug Dev. Res. 2007; 68: 156
    • 1n Pooni PK, Showell GA. Mini-Rev. Med. Chem. 2006; 6: 1169
    • 1o Daud A, Valkov N, Centeno B, Derderian J, Sullivn P, Munster P, Urbas P, DeConti RC, Berghorn E, Liu Z, Hausheer F, Sullivan D. Clin. Cancer Res. 2005; 11: 3009
    • 1p Mills JS, Showell GA. Expert Opin. Invest. Drugs 2004; 13: 1149
    • 1q Bains W, Tacke R. Curr. Opin. Drug Discov. Devel. 2003; 6: 526
    • 1r Showell GA, Mills JS. Drug Discov. Today 2003; 8: 551
    • 1s Sieburth SM. ACS Symp. Ser. 1996; 640: 74
    • 1t Tacke R, Wannagat U. Top. Curr. Chem. 1979; 84: 1
    • 1u Allred AL, Rochow EG. J. Inorg. Nucl. Chem. 1958; 5: 264
  • 2 Tacke R, Popp F, Müller B, Theis B, Burschka C, Hamacher A, Kassack MU, Schepmann D, Wünsch B, Jurva U, Wellne E. ChemMedChem 2008; 3: 152
  • 3 Luo G, Chen L, Li Y, Fan Y, Wang D, Yang Y, Gao L, Jiang R, Song Z. Org. Chem. Front. 2021; 8: 5941
  • 4 Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
    • 5a Voronkov MG, Kirpichenko SV, Abrosimova AT, Albanov AI. J. Organomet. Chem. 1991; 406: 87
    • 5b Li Q, Driess M, Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 8471
    • 5c Sakurai H, Kamiyama Y, Nakadaira Y. J. Chem. Soc., Chem. Commun. 1978; 80
    • 5d Anderson LL, Woerpel KA. Org. Lett. 2009; 11: 425
    • 5e Cavelier F, Vivet B, Martinez J, Aubry A, Didierjean C, Vicherat A, Marraud M. J. Am. Chem. Soc. 2002; 124: 2917
    • 5f Cavelier F, Marchand D, Mbassi P, Martinez J, Marraud M. J. Pept. Sci. 2006; 12: 621
    • 5g Pujals S, Fernandez-Carneado J, Kogan MJ, Martinez J, Cavelier F, Giralt E. J. Am. Chem. Soc. 2006; 128: 8479
    • 5h Chung JY. L, Shevlin M, Klapars A, Journet M. Org. Lett. 2016; 18: 1812
    • 5i Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
    • 5j Su B, Lee T, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 18032
    • 5k Fang HQ, Hou WJ, Liu GX, Huang Z. J. Am. Chem. Soc. 2017; 139: 11601
    • 5l Cheeseman GW. H, Greenberg SG. J. Organomet. Chem. 1979; 166: 139
    • 5m Toutov AA, Liu W.-B, Betz KN, Fedorov A, Stoltz BM, Grubbs RH. Nature 2015; 518: 80
    • 5n Barraza SJ, Denmark SE. J. Am. Chem. Soc. 2018; 140: 6668
    • 5o Wang WS, Zhou S, Li LJ, He YH, Dong X, Gao L, Wang QT, Song ZL. J. Am. Chem. Soc. 2021; 143: 11141
    • 5p Sato Y, Takagi C, Shintani R, Nozaki K. Angew. Chem. Int. Ed. 2017; 56: 9211
    • 5q Ahmad M, Gaumont AC, Durandetti M, Maddaluno J. Angew. Chem. Int. Ed. 2017; 56: 2464
    • 5r Li HH, Wang Y, Yuan K, Tao Y, Chen RF, Zheng C, Zhou XH, Li JF, Huan W. Chem. Commun. 2014; 50: 15760
    • 5s Zhang JB, Park S, Chang S. J. Am. Chem. Soc. 2018; 140: 13209
    • 5t Fang HQ, Xie KX, Kemper S, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 8542
    • 6a Lazareva NF, Sterkhova IV, Albanov AI. J. Organomet. Chem. 2018; 867: 62
    • 6b Bassindale A. J. Organomet. Chem. 2001; 619: 132
  • 7 Xu Q, Kulkarni AA, Sajith AM, Hussein D, Brown D, Güner OF, Reddy MD, Watkins EB, Lassègue B, Griendling KK, Bowen JP. Bioorg. Med. Chem. 2018; 26: 989
  • 8 CCDC 2143284 (2c) and 2143285 (3c) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 9 Kai H, Morioka Y, Murashi T, Morita K, Shinonome S, Nakazato H, Kawamoto K, Hanasaki K, Takahashi F, Mihara S, Arai T, Abe K, Okabe H, Baba T, Yoshikawa T, Takenaka H. Bioorg. Med. Chem. Lett. 2007; 17: 4030
  • 10 Baeg J, Alper H. J. Org. Chem. 1995; 60: 3092
  • 11 Inman GA, Butler DC. D, Alper H. Synlett 2001; 914