CC BY-NC-ND 4.0 · Synthesis 2022; 54(17): 3858-3866
DOI: 10.1055/a-1761-4672
special topic
Special Issue in memory of Prof. Ferenc Fülöp

Beyond the Bioorthogonal Inverse-Electron-Demand Diels–Alder Reactions of Tetrazines: 2-Pyrone-Functionalized Fluorogenic Probes

Gergely B. Cserép
a   Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2., 1117 Budapest, Hungary
,
Krisztina Németh
a   Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2., 1117 Budapest, Hungary
,
Ágnes Szatmári
a   Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2., 1117 Budapest, Hungary
,
Flóra Horváth
a   Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2., 1117 Budapest, Hungary
,
Tímea Imre
b   MS Metabolomics Research Group, Centre for Structural Study, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2., 1117 Budapest, Hungary
,
Krisztina Németh
b   MS Metabolomics Research Group, Centre for Structural Study, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2., 1117 Budapest, Hungary
,
Péter Kele
a   Chemical Biology Research Group, Institute of Organic Chemistry, ELKH Research Centre for Natural Sciences, Magyar Tudósok Krt 2., 1117 Budapest, Hungary
› Author Affiliations
This work has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the [NKFIH-K-131439 and NKFIH-PD-123955] funding scheme. We are also grateful for the generous support of Eötvös Loránd Research Network (KEP-6, FIKU).


Abstract

The applicability of pyrones as a bioorthogonal platform was explored in inverse-electron-demand Diels–Alder (IEDDA) reactions with a strained cyclooctyne. Studies showed that the pyrones are indeed suitable for IEDDA reactions under physiological conditions. Furthermore, the stable pyrone moiety could be utilized to construct easily accessible fluorogenic probes. Mutual orthogonality of the IEDDA reaction of 2-pyrones with SPAAC reactions of azides was also explored.

Supporting Information



Publication History

Received: 15 October 2021

Accepted after revision: 03 January 2022

Accepted Manuscript online:
04 February 2022

Article published online:
06 April 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Nat. Rev. Methods Primers 2021; 1: 30
    • 3a Meimetis LG, Carlson JC. T, Giedt RJ, Kohler RH, Weissleder R. Angew. Chem. Int. Ed. 2014; 53: 7531
    • 3b Wieczorek A, Werther P, Euchner J, Wombacher R. Chem. Sci. 2017; 8: 1506
    • 3c Kozma E, Kele P. Org. Biomol. Chem. 2019; 17: 215
    • 3d Werther P, Yserentant K, Braun F, Kaltwasser N, Popp C, Baalmann M, Herten D.-P, Wombacher R. Angew. Chem. Int. Ed. 2020; 59: 804
    • 3e Werther P, Yserentant K, Braun F, Grußmayer K, Navikas V, Yu M, Zhang Z, Ziegler MJ, Mayer C, Gralak AJ, Busch M, Chi W, Rominger F, Radenovic A, Liu X, Lemke EA, Buckup T, Herten D.-P, Wombacher R. ACS Cent. Sci. 2021; 7: 1561
    • 3f Albitz E, Kern D, Kormos A, Bojtár M, Török G, Biró A, Szatmári Á, Németh K, Kele P. Angew. Chem. Int. Ed. 2022; 61: e202111855
    • 4a Nikic I, Plass T, Schraidt O, Szymanski J, Briggs J, Schultz C, Lemke EA. Angew. Chem. Int. Ed. 2014; 53: 2245
    • 4b Szatmári Á, Cserép GB, Molnár T. Á, Söveges B, Biró A, Várady G, Szabó E, Németh K, Kele P. Molecules 2021; 26: 4988
    • 4c Ganz D, Harijan D, Wagenknecht H.-A. RSC Chem. Biol. 2020; 1: 86
    • 5a Devaraj NK. ACS Cent. Sci. 2018; 4: 952
    • 5b Nguyen SS, Prescher JA. Nat. Rev. Chem. 2020; 4: 476
    • 5c Kamber DN, Liang Y, Blizzard RJ, Liu F, Mehl RA, Houk KN, Prescher JA. J. Am. Chem. Soc. 2015; 137: 8388
    • 5d Reisacher U, Ploschik D, Rönicke F, Cserép GB, Kele P, Wagenknecht HA. Chem. Sci. 2019; 10: 4032
    • 5e Favre C, Friscourt F. Org. Lett. 2018; 20: 4213
    • 5f Smeenk ML. W. J, Agramunt J, Bonger KM. Curr. Opin. Chem. Biol. 2021; 60: 79
    • 5g Narayanam MK, Liang Y, Houk KN, Murphy JM. Chem. Sci. 2016; 7: 1257
    • 6a Diels O, Alder K. Justus Liebigs Ann. Chem. 1931; 490: 257
    • 6b Afarinkia K, Vinader V, Nelson TD, Posner GH. Tetrahedron 1992; 48: 9111
    • 6c Dobler D, Leitner M, Moor N, Reiser O. Eur. J. Org. Chem. 2021; 6180
  • 7 Varga BR, Kállay M, Hegyi K, Béni S, Kele P. Chem. Eur. J. 2012; 18: 822
    • 8a Knorr G, Kozma E, Schaart JM, Németh K, Török G, Kele P. Bioconjugate Chem. 2018; 29: 1312
    • 8b Egyed A, Kormos A, Söveges B, Németh K, Kele P. Bioorg. Med. Chem. 2020; 28: 115218
    • 8c Németh E, Knorr G, Németh K, Kele P. Biomolecules 2020; 20: 397
    • 9a Lee JJ, Pollock GR. III, Mitchell D, Kasuga L, Kraus GA. RSC Adv. 2014; 4: 45657
    • 9b Cai Q. Chin. J. Chem. 2019; 37: 946
    • 9c Cole CJ. F, Fuentes L, Snyder SA. Chem. Sci. 2020; 11: 2175
    • 10a Fairlamb IJ. S, Lu FJ, Schmidt JP. Synthesis 2003; 2564
    • 10b Fairlamb IJ. S, Lee AF, Loe-Mie FE. M, Niemelä EH, O’Brien CT, Whitwood AC. Tetrahedron 2005; 61: 9827
    • 10c Frébault F, Oliveira MT, Wöstefeld E, Maulide N. J. Org. Chem. 2010; 75: 7962
    • 10d Xavier T, Pichon C, Presset M, Gall EL, Condon S. Eur. J. Org. Chem. 2021; 4308
  • 11 Mukhopadhyay A, Maka VK, Moorthy JN. Phys. Chem. Chem. Phys. 2017; 19: 4758
  • 12 Wu J.-S, Liu W.-M, Zhuang X.-Q, Wang F, Wang P.-F, Tao S.-L, Zhang X.-H, Wu S.-K, Lee S.-T. Org. Lett. 2007; 9: 33
    • 13a Wu W, Kolanowski JL, Boumelhem BB, Yang K, Lee R, Kaur A, Fraser ST, New EJ, Rendina LM. Chem. Asian J. 2017; 12: 1704
    • 13b Sun H, Guo H, Wu W, Liu X, Zhao J. Dalton Trans. 2011; 7834
  • 14 Ashworth IW, Bowden MC, Dembofsky B, Levin D, Moss W, Robinson E, Szczur N, Virica J. Org. Process Res. Dev. 2003; 7: 74
    • 15a Cserép GB, Herner A, Kele P. Methods Appl. Fluoresc. 2015; 3: 042001
    • 15b Deb T, Tu J, Franzini RM. Chem. Rev. 2021; 121: 6850
    • 15c Codelli JA, Baskin JM, Agard NJ, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 11486
    • 15d Dommerholt J, Schmidt S, Temming R, Hendriks LJ. A, Rutjes FP. J. T, Van Hest JC. M, Lefeber DJ, Friedl P, Van Delft FL. Angew. Chem. Int. Ed. 2010; 49: 9422
  • 16 Rurack K, Spieles M. Anal. Chem. 2011; 83: 1232
    • 17a Németh E, Knorr G, Németh K, Kele P. Biomolecules 2020; 20: 397
    • 17b Török G, Cserép GB, Telek A, Arany D, Váradi M, Homolya L, Kellermayer M, Kele P, Németh K. Methods Appl. Fluoresc. 2021; 9: 015006
    • 18a Wu H, Yang J, Seckute J, Deveraj NK. Angew. Chem. Int. Ed. 2014; 53: 5805
    • 18b Lambert WD, Fang Y, Mahapatra S, Huang Z, Ende CW, Fox JM. J. Am. Chem. Soc. 2019; 141: 17068