Synthesis 2022; 54(17): 3708-3718
DOI: 10.1055/a-1833-8813
short review

Catalytic Asymmetric Construction of CF3-Substituted Chiral sp3 Carbon Centers

Koji Hirano
This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI (JP 22H02077) [Grant-in-Aid for Scientific Research(B)] and the Japan Science and Technology Agency (JST), FOREST Program (JPMJFR 211X).


Abstract

Due to the unique steric and electronic nature of the fluorine atom, organofluorine compounds have received significant attention in the fields of pharmaceuticals and agrochemicals. In particular, the CF3 group is frequently found in biologically active compounds. However, compared to aryl- and alkenyl-CF3-containing molecules, the construction of sp3 carbon-based alkyl-CF3-containing molecules, particularly via catalytic enantioselective synthesis, remains a considerable challenge in spite of their high potential in medicinal applications. This short review focuses on recent advances in this research area, and the reported strategies are categorized according to reaction types and starting substrates. In addition, chiral catalysts, substrate scope, and reaction mechanisms are briefly summarized.

1 Introduction

2 Stereoselective Introduction of a CF3 Group

2.1 Nucleophilic Addition to Carbonyls and Imines

2.2 Electrophilic Substitution at the α Position of Carbonyls

2.3 Allylic Nucleophilic Substitution

3 Stereoselective Functionalization of CF3-Substituted Molecules

3.1 Electrophilic Substitution of α-CF3 Carbonyls

3.2 Substitution of α-Halo CF3 Compounds

3.3 Addition-Type Reactions with CF3-Substituted Alkenes

4 Conclusion and Outlook

Key words

addition

asymmetric catalysis

fluorine

substitution

trifluoromethyl group



Publication History

Received: 07 April 2022

Accepted after revision: 25 April 2022

Accepted Manuscript online:
25 April 2022

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Swallow S. In Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Gouverneur V, Müller K. Imperial College Press; London: 2012: 141
    • 1b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 1d Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
    • 2a Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. Nucleic Acids Res. 2018; 46: D1074
    • 2b Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 3a Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 3b Alonso C, de Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
  • 4 André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, Yamashita T, Lu Y.-S, Inoue K, Takahashi M, Pápai Z, Longin A.-S, Mills D, Wilke C, Hirawat S, Juric D. N. Engl. J. Med. 2019; 380: 1929
  • 5 Takagi T, Naito Y, Okada H, Ishii T, Mizushima K, Akagiri S, Adachi S, Hanada O, Kokura S, Ichikawa H, Itoh K, Yamamoto M, Matsui H, Yoshikawa T. J. Pharmacol. Exp. Ther. 2009; 331: 255
  • 6 Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS, Olsen DB, Carroll SS, Pettibone DJ, O’Brien JA, Ball RG, Balani SK, Lin JH, Chen I.-W, Schleif WA, Sardana VV, Long WJ, Byrnes VW, Emini EA. Antimicrob. Agents Chemother. 1995; 39: 2602
  • 7 Curet O, Damoiswau G, Aubin N, Sontag N, Jarreau FX. J. Pharmacol. Exp. Ther. 1996; 277: 253
  • 8 Masarachia PJ, Pennypacher BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, Duong LT. J. Bone Miner. Res. 2012; 27: 509
    • 9a Rupport I, Schlich K, Volbach W. Tetrahedron Lett. 1984; 25: 2195
    • 9b Parakash GK. S, Krishnamurti R, Olah GA. J. Am. Chem. Soc. 1989; 111: 393
  • 10 Iseki K, Nagai T, Kobayashi Y. Tetrahedron Lett. 1994; 35: 3137
  • 11 Kuroki Y, Iseki K. Tetrahedron Lett. 1999; 40: 8231
  • 12 Caron S, Do NM, Aroin P, Larivée A. Synthesis 2003; 1693
  • 13 Zhao H, Qin B, Liu X, Feng X. Tetrahedron 2007; 63: 6822
  • 14 Mizuta S, Shibata N, Akiti S, Fujimoto H, Nakamura S, Toru T. Org. Lett. 2007; 9: 3703
    • 15a Kawai H, Kusuda A, Nakamura S, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2009; 48: 6324
    • 15b Okusu S, Kawai H, Xu X.-H, Tokunaga E, Shibata N. J. Fluorine Chem. 2012; 143: 216
  • 16 Umemoto T, Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
  • 17 Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
  • 18 Deng Q.-H, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2012; 134: 10769
  • 19 Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 4986
  • 20 Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
    • 21a Tsuji J, Minami I. Acc. Chem. Res. 1987; 20: 140
    • 21b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 21c Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
    • 21d Trost BM. Tetrahedron 2015; 71: 5708
    • 21e Tsuji J. Tetrahedron 2015; 71: 6330
  • 22 Trost BM, Gholami H, Zell D. J. Am. Chem. Soc. 2019; 141: 11446
  • 23 Furukawa T, Nishimine T, Tokunaga E, Hasegawa K, Shiro M, Shibata N. Org. Lett. 2011; 13: 3972
  • 24 Li Y, Liang F, Xu Y.-c, Wang Q.-R, Jiang L. Org. Lett. 2011; 13: 6082
    • 25a Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
    • 25b Onyeagusi CI, Malcolmson SJ. ACS Catal. 2020; 10: 12507
  • 26 Itoh Y, Yamanaka M, Mikami K. J. Am. Chem. Soc. 2004; 126: 13174
  • 27 Yin L, Brewitz L, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2014; 136: 17958
  • 28 Saito A, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2017; 56: 5551
  • 29 Zhu Y, Ni Y, Lu C, Wang X, Wang Y, Xue X.-S, Pan Y. Org. Lett. 2021; 23: 2443
  • 30 Bai D.-C, Yu F.-L, Wang W.-Y, Chen D, Li H, Liu Q.-R, Ding C.-H, Chen B, Hou X.-L. Nat. Commun. 2016; 7: 11806
    • 31a Méndez M, Cuerva JM, Gómez-Bengoa E, Cárdenas DJ, Echavarren AM. Chem. Eur. J. 2002; 8: 3620
    • 31b Zhang P, Brozek LA, Morken JP. J. Am. Chem. Soc. 2010; 132: 10686
  • 32 Liang Y, Fu GC. J. Am. Chem. Soc. 2015; 137: 9523
    • 33a Jones GD, Martin JL, McFarland C, Allen OR, Hall RE, Haley AD, Brandon RJ, Konovalova T, Desrochers PJ, Pulay P, Vicic DA. J. Am. Chem. Soc. 2006; 128: 13175
    • 33b Lin X, Phillips DL. J. Org. Chem. 2008; 73: 3680
    • 33c Schley ND, Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
  • 34 Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
  • 35 Huang W, Hu M, Wan X, Shen Q. Nat. Commun. 2019; 10: 2963
  • 36 Varenikov A, Shapiro E, Gandelman M. Org. Lett. 2020; 22: 9386
  • 37 Gandelman M, Varenikov A. Nat. Commun. 2018; 9: 3566
  • 38 Min Y, Sheng J, Yu J.-L, Ni S.-X, Ma G, Gong H, Wang X.-S. Angew. Chem. Int. Ed. 2021; 60: 9947
  • 39 Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
  • 40 Guo W, Cheng L, Ma G, Tong W, Wu F. Org. Lett. 2022; 24: 1796
  • 41 Lin T.-Y, Pan Z, Tu Y, Zhu S, Wu H.-H, Liu Y, Li Z, Zhang J. Angew. Chem. Int. Ed. 2020; 59: 22957

    • For examples, see ref. 25 and:
    • 42a Dong K, Li Y, Wang Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 14191
    • 42b Massolo E, Benaglia M, Orlandi M, Rossi S, Celentano G. Chem. Eur. J. 2015; 21: 3589
    • 42c Zhu Y, Li X, Chen Q, Su J, Jia F, Qiu S, Ma M, Sun Q, Yan W, Wang K, Wang R. Org. Lett. 2015; 17: 3826
    • 42d Zhu Y, Dong Z, Cheng X, Zhong X, Liu X, Shen Z, Yang P, Li Y, Wang H, Yan W, Wang K, Wang R. Org. Lett. 2016; 18: 3546
    • 42e Holmes M, Nguyen KD, Schwartz LA, Luong T, Krische MJ. J. Am. Chem. Soc. 2017; 139: 8114
    • 42f Pan X, Wang Z, Kan L, Mao Y, Zhu Y, Liu L. Chem. Sci. 2020; 11: 2414
  • 43 Takata T, Hirano K, Miura M. Org. Lett. 2019; 21: 4284
    • 44a Corberán R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
    • 44b Kojima R, Akiyama S, Ito H. Angew. Chem. Int. Ed. 2018; 57: 7196
    • 44c Sakaguchi H, Uetake Y, Ohashi M, Niwa T, Ogoshi S, Hosoya T. J. Am. Chem. Soc. 2017; 139: 12855
    • 44d Sakaguchi H, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2018; 57: 328
    • 44e Kojima Y, Takata T, Hirano K, Miura M. Chem. Lett. 2020; 49: 637
    • 44f For a related review, see: Wang M, Shi Z. Chem. Lett. 2021; 50: 553
  • 45 Mikami K, Itoh Y, Yamanaka M. Chem. Rev. 2004; 104: 1
  • 46 Kojima Y, Miura M, Hirano K. ACS Catal. 2021; 11: 11663
  • 47 Goff CM, Matchette MA, Shabestary N, Khazaeli S. Polyhedron 1996; 15: 3897
  • 48 Paioti PH. S, del Pozo J, Mikus MS, Lee J, Koh MJ, Romiti F, Torker S, Hoveyda AH. J. Am. Chem. Soc. 2019; 141: 19917
  • 49 Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Angew. Chem. Int. Ed. 2021; 60: 20376
  • 50 Yamaguchi D, Nakamura I, Nishimura T. Chem. Commun. 2021; 57: 11787
    • 51a Guo S, AbuSalim DI, Cook SP. J. Am. Chem. Soc. 2018; 140: 12378
    • 51b Sarver PJ, Bacauanu V, Schults DM, DiRocco DA, Lam Y.-h, Shere EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
    • 51c He J, Nguyen TN, Guo S, Cook SP. Org. Lett. 2021; 23: 702