Synthesis 2022; 54(17): 3667-3697
DOI: 10.1055/a-1845-3810
review

Recent Advances in C–F Bond Activation of Acyl Fluorides Directed toward Catalytic Transformation by Transition Metals, N-Heterocyclic Carbenes, or Phosphines

Tian Tian
a   Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
,
Qiang Chen
a   Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
,
Zhiping Li
b   Department of Chemistry, Renmin University of China, Beijing 100872, P. R. of China
,
c   Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
› Institutsangaben


Abstract

Numerous studies on the activation of carbon–fluorine bonds have been reported in recent years. For example, acyl fluorides have been utilized as versatile reagents for acylation, arylation, and even fluorination. In this review, we focus on acyl fluorides as compounds with carbon–fluorine bonds, and highlight recent advances in strategies for the activation of their C–F bonds via transition-metal catalysis, N-heterocyclic carbene (NHCs) catalysis, organophosphine catalysis, and classical nucleophilic substitution reactions.

1 Introduction

2 Transition-Metal-Mediated C–F Bond Activation

2.1 Acylation (Carbonyl-Retentive) Coupling Reactions

2.2 Decarbonylative Reactions

2.3 C–F Bond Activation by Other Transition Metals

3 C–F Bond Activation by N-Heterocyclic Carbenes (NHCs)

3.1 NHC-Catalyzed Cycloaddition of Acyl Fluorides

3.2 NHC-Catalyzed Radical Functionalization of Acyl Fluorides

3.3 NHC-Catalyzed Nucleophilic Fluorination of (Hetero)aromatics

4 C–F Bond Activation by Phosphines

4.1 Phosphine-Catalyzed Direct Activation of the C–F Bond of Acyl Fluorides

4.2 Phosphine-Catalyzed Indirect Activation of the C–F Bond of Acyl Fluorides

5 C–F Bond Activation by Classical Nucleophilic Substitution

6 Miscellaneous Examples

7 Summary and Perspective



Publikationsverlauf

Eingereicht: 31. März 2022

Angenommen nach Revision: 06. Mai 2022

Accepted Manuscript online:
06. Mai 2022

Artikel online veröffentlicht:
30. Juni 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For several selected reviews, see:
    • 1a Doherty NM, Hoffman NW. Chem. Rev. 1991; 91: 553
    • 1b Kiplinger JL, Richmond TG, Osterberg CE. Chem. Rev. 1994; 94: 373
    • 1c Murphy EF, Murugavel R, Roesky HW. Chem. Rev. 1997; 97: 3425
    • 1d Richmond TG. Metal Reagents for Activation and Functionalization of Carbon-Fluorine Bonds. In Activating of Unreactive Bonds and Organic Synthesis, In Topics in Organometallic Chemistry, Vol. 3. Murai S. Springer; New York: 1999: 243-269
    • 1e Mazurek U, Schwarz H. Chem. Commun. 2003; 1321
    • 1f Torrens H. Coord. Chem. Rev. 2005; 249: 1957
    • 1g Amii H, Uneyama K. Chem. Rev. 2009; 109: 2119
  • 2 Perutz RN, Braun T. Transition-Metal Mediated C–F Bond Activation . In Comprehensive Organometallic Chemistry III, Vol. 1. Crabtree RH, Mingos DM. P. Elsevier; Amsterdam: 2007: 725-758
    • 3a David RL. In CRC Handbook of Chemistry and Physics . CRC Press; Boca Raton: 2005
    • 3b Bosque R, Clot E, Fantacci S, Maseras F, Eisenstein O, Perutz RN, Renkema KB, Caulton KG. J. Am. Chem. Soc. 1998; 120: 12634
    • 3c Macgregor SA, Roe DC, Marshall WJ, Bloch KM, Bakhmutov VI, Grushin VV. J. Am. Chem. Soc. 2005; 127: 15304
    • 4a Fahey DR, Mahan JE. J. Am. Chem. Soc. 1977; 99: 2501
    • 4b Cronin L, Higgitt CL, Karch R, Perutz RN. Organometallics 1997; 16: 4920
    • 4c Braun T, Cronin L, Higgitt CL, McGrady JE, Perutz RN, Reinhold M. New J. Chem. 2001; 25: 19
    • 4d Bach I, Pörschke KR, Goddard R, Kopiske C, Krüger C, Rufińska A, Seevoģel K. Organometallics 1996; 15: 4959

      For selected reviews, see:
    • 5a Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375
    • 5b Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 5c Liu C, Zeng H, Zhu C, Jiang H. Chem. Commun. 2020; 56: 10442

      For selected reviews, see:
    • 6a Fedoryński M. Chem. Rev. 2003; 103: 1099
    • 6b Dolbier WR, Battiste MA. Chem. Rev. 2003; 103: 1071
  • 7 For a recent review, see: Wang Z, Sun Y, Shen L.-Y, Yang W.-C, Meng F, Li P. Org. Chem. Front. 2022; 9: 853
  • 8 For selected reviews, see: Ogiwara Y, Sakai N. Angew. Chem. Int. Ed. 2020; 59: 574
  • 9 For a selected review, see: Meng G, Zhang J, Szostak M. Chem. Rev. 2021; 121: 12746

    • For selected reviews on the activation of acyl chlorides, see:
    • 10a Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
    • 10b Dermenci A, Dong G. Sci. China Chem. 2013; 56: 685
    • 10c Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
  • 11 For a selected review on the activation of anhydrides, see: Johnson JB, Rovis T. Acc. Chem. Res. 2008; 41: 327

    • For selected reviews on the activation of esters, see:
    • 12a Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
    • 12b Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
    • 12c Hirschbeck V, Gehrtz PH, Fleischer I. Chem. Eur. J. 2018; 24: 7092
  • 14 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308

    • For the hydrolysis of acyl fluorides, see:
    • 15a Swain CG, Scott CB. J. Am. Chem. Soc. 1953; 75: 246
    • 15b Satchell DP. N. J. Chem. Soc. 1963; 555
    • 15c Bunton CA, Fendler JH. J. Org. Chem. 1966; 31: 2307
    • 15d Motie RE, Satchell DP. N, Wassef WN. J. Chem. Soc., Perkin Trans. 2 1993; 1087
    • 15e George C, Saison JY, Ponche JL, Mirabel P. J. Phys. Chem. 1994; 98: 10857

      For the alcoholysis of acyl fluorides, see:
    • 16a Swain CG, Mosely RB, Bown DE. J. Am. Chem. Soc. 1955; 77: 3731
    • 16b Miller J, Ying O.-L. J. Chem. Soc., Perkin Trans. 2 1985; 323
    • 16c Song BD, Jencks WP. J. Am. Chem. Soc. 1989; 111: 8470
    • 16d Kevill DN, D’Souza MJ. J. Org. Chem. 2004; 69: 7044

      For the aminolysis of acyl fluorides, see:
    • 17a Bender ML, Jones JM. J. Org. Chem. 1962; 27: 3771
    • 17b Lee I, Shim CS, Chung SY, Kim HY, Lee HW. J. Chem. Soc., Perkin Trans. 2 1988; 1919
    • 17c Song BD, Jencks WP. J. Am. Chem. Soc. 1989; 111: 8479
    • 17d Jedrzejczak M, Motie RE, Satchell DP. N. J. Chem. Soc., Perkin Trans. 2 1993; 599
    • 17e Lee BC, Sohn DS, Yoon JH, Yang SM, Lee I. Bull. Korean Chem. Soc. 1993; 14: 621
    • 17f Jedrzejczak M, Motie RE, Satchell DP. N, Satchell RS, Wassef WN. J. Chem. Soc., Perkin Trans. 2 1994; 1471

      For several selected reviews, see:
    • 18a Carpino L. A.; Beyermann M.; Wenschuh H.; Bienert M. Acc. Chem. Res. 1996, 29, 268.
    • 18b Montalbetti C. A. G. N.; Falque V. Tetrahedron 2005, 61, 10827.
    • 18c Valeur E., Bradley M.; Chem. Soc. Rev.; 2009, 38, 606
    • 18d El-Faham A., Khattab S. N.; Synlett; 2009, 886
    • 18e El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 18f Prabhu G, Narendra N, Basavaprabhu, Panduranga V, Sureshbabu VV. RSC Adv. 2015; 5: 48331

      For several examples of the Friedel–Crafts-type acylation using acyl fluorides, see:
    • 19a Yamase Y. Bull. Chem. Soc. Jpn. 1961; 34: 480
    • 19b Olah GA, Moffatt ME, Kuhn SJ, Hardie BA. J. Am. Chem. Soc. 1964; 86: 2198
    • 19c Hyatt JA, Raynolds PW. J. Org. Chem. 1984; 49: 384
    • 19d Nenajdenko VG, Lebedev MV, Balenkova ES. Tetrahedron Lett. 1995; 36: 6317
    • 19e Raghavendra Rao KV, Vallée Y. Tetrahedron 2016; 72: 4442

      For several examples of nucleophilic acyl substitution of acyl fluorides using alcohols, see:
    • 20a Granitza D, Beyermann M, Wenschuh H, Haber H, Carpino LA, Truran GA, Bienert M. J. Chem. Soc., Chem. Commun. 1995; 2223
    • 20b Nicolaou KC, Mitchell HJ, Suzuki H, Rodríguez RM, Baudoin O, Fylaktakidou KC. Angew. Chem. Int. Ed. 1999; 38: 3334
    • 20c Nicolaou KC, Rodríguez RM, Fylaktakidou KC, Suzuki H, Mitchell HJ. Angew. Chem. Int. Ed. 1999; 38: 3340
    • 20d Pospisil J, Müller C, Fürstner A. Chem. Eur. J. 2009; 15: 5956
    • 20e Wu H, Guo W, Daniel S, Li Y, Liu C, Zeng Z. Chem. Eur. J. 2018; 24: 3444
    • 20f Craig R, Litvajova M, Cronin SA, Connon SJ. Chem. Commun. 2018; 54: 10108
    • 20g Zhang Y, Rovis T. Org. Lett. 2004; 6: 1877
    • 21a Blanchard N, Bizet V. Angew. Chem. Int. Ed. 2019; 58: 6814
    • 21b Zhao Q, Szostak M. ChemSusChem 2019; 12: 2983
    • 21c Wang Z, Wang X, Nishihara Y. Chem. Asian J. 2020; 15: 1234
    • 21d Fu L, Chen Q, Nishihara Y. Chem. Rec. 2021; 21: 3394
    • 21e Karbakhshzadeh A, Heravi MR. P, Rahmani Z, Ebadi AG, Vessally E. J. Fluorine Chem. 2021; 248: 109806
  • 22 Whittlesey MK, Perutz RN, Moore MH. Chem. Commun. 1996; 787
  • 23 Aizenberg M, Milstein D. Science 1994; 265: 359
  • 24 Kraft BM, Jones WD. J. Organomet. Chem. 2002; 658: 132
  • 25 King RB, Bisnette MB. J. Organomet. Chem. 1964; 2: 38
  • 26 Edelbach BL, Jones WD. J. Am. Chem. Soc. 1997; 119: 7734
    • 27a Burdeniuc J, Chupka W, Crabtree RH. J. Am. Chem. Soc. 1995; 117: 10119
    • 27b Burdeniuc J, Crabtree RH. J. Am. Chem. Soc. 1996; 118: 2525
    • 27c Burdeniuc J, Crabtree RH. Organometallics 1998; 17: 1582
  • 28 Olah GA, Kreienbühl P. J. Org. Chem. 1967; 32: 1614
  • 29 Ehrenkaufer RE, MacGregor RR, Wolf AP. J. Org. Chem. 1982; 47: 2489

    • For selected reviews, see:
    • 30a Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley-VCH; Weinheim: 2020
    • 30b Tasker SI, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 31 Zhang Y, Rovis T. J. Am. Chem. Soc. 2004; 126: 15964
  • 32 Pan F.-F, Guo P, Li C.-L, Su P, Shu X.-Z. Org. Lett. 2019; 21: 3701
  • 33 Ueda Y, Iwai T, Sawamura M. Chem. Eur. J. 2019; 25: 9410
  • 34 Wang J, Hoerrner ME, Watson MP, Weix DJ. Angew. Chem. Int. Ed. 2020; 59: 13484
  • 35 Li Y, Zhang F.-P, Wang R.-H, Qi S.-L, Luan Y.-X, Ye M. J. Am. Chem. Soc. 2020; 142: 19844
  • 36 Nielsen CD.-T, Zivkovic FG, Schoenebeck F. J. Am. Chem. Soc. 2021; 143: 13029
  • 37 Lin B.-L, Liu L, Fu Y, Luo S.-W, Chen Q, Guo Q.-X. Organometallics 2004; 23: 2114
  • 38 Ogiwara Y, Maegawa Y, Sakino D, Sakai N. Chem. Lett. 2016; 45: 790
  • 39 Ogiwara Y, Sakino D, Sakurai Y, Sakai N. Eur. J. Org. Chem. 2017; 4324
  • 40 Ogiwara Y, Iino Y, Sakai N. Chem. Eur. J. 2019; 25: 6513
  • 41 Ogiwara Y, Sakurai Y, Hattori H, Sakai N. Org. Lett. 2018; 20: 4204
  • 42 Sakurai Y, Ogiwara Y, Sakai N. Chem. Eur. J. 2020; 26: 12972
  • 43 Sakurai Y, Ikai K, Hayakawa K, Ogiwara Y, Sakai N. Bull. Chem. Soc. Jpn. 2021; 94: 1882
  • 44 Ogiwara Y, Hosaka S, Sakai N. Organometallics 2020; 39: 856
  • 45 For a recent review, see: Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365
  • 46 Keaveney ST, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 4073
  • 47 Malapit CA, Bour JR, Brigham CE, Sanford MS. Nature 2018; 563: 100
    • 48a Malapit CA, Bour JR, Laursen SR, Sanford MS. J. Am. Chem. Soc. 2019; 141: 17322
    • 48b Fehér PP, Stirling A. Organometallics 2020; 39: 2774
  • 49 Okuda Y, Xu J, Ishida T, Wang C.-A, Nishihara Y. ACS Omega 2018; 3: 13129
  • 50 Chen Q, Fu L, You J, Nishihara Y. Synlett 2021; 32: 1560
  • 51 Wang Z, Wang X, Nishihara Y. Chem. Commun. 2018; 54: 13969
  • 52 Wang X, Wang Z, Liu L, Asanuma Y, Nishihara Y. Molecules 2019; 24: 1671
  • 53 Wang X, Wang Z, Nishihara Y. Chem. Commun. 2019; 55: 10507
  • 54 You J, Chen Q, Nishihara Y. Synthesis 2021; 53: 3045
  • 55 Fu L, Chen Q, Wang Z, Nishihara Y. Org. Lett. 2020; 22: 2350
  • 56 Chen Q, Fu L, Nishihara Y. Chem. Commun. 2020; 56: 7977
  • 57 Sakurai S, Tobisu M. Chem. Lett. 2021; 50: 151
  • 58 Lalloo N, Malapit CA, Taimoory SM, Brigham CE, Sanford MS. J. Am. Chem. Soc. 2021; 143: 18617
  • 59 Chen Q, Li Z, Nishihara Y. Org. Lett. 2022; 24: 385
  • 60 Kayumov M, Zhao J.-N, Mirzaakhmedov S, Wang D.-Y, Zhang A. Adv. Synth. Catal. 2020; 362: 776
  • 61 Boreux A, Indukuri K, Gagosz F, Riant O. ACS Catal. 2017; 7: 8200
  • 62 Sakurai S, Yoshida T, Tobisu M. Chem. Lett. 2019; 48: 94
  • 63 He B, Liu X, Li H, Zhang X, Ren Y, Su W. Org. Lett. 2021; 23: 4191

    • For several selected reviews, see:
    • 64a Banks RE, Sharp DW. A, Tatlow JC. Fluorine: The First Hundred Years (1886-1986) . Elsevier; New York: 1986
    • 64b Banks RE, Smart BE, Tatlow JC. Organofluorine Chemistry: Principles and Commercial Applications . Plenum Press; New York: 2000
    • 64c Hiyama T, Kanie K, Kusumoto T, Morizawa Y, Shimizu M. Organofluorine Compounds: Chemistry and Applications . Springer-Verlag; Berlin: 2000
    • 64d Bégué J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . John Wiley & Sons; Hoboken: 2008
    • 65a Thayer AM. Chem. Eng. News 2006; 84: 15
    • 65b Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 65c Jeschke P. ChemBioChem 2004; 5: 570
    • 65d Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
    • 65e Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 65f Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 66a Smart BE. J. Fluorine Chem. 2001; 109: 3
    • 66b Phelps ME. Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 9226
    • 66c Bondi A. J. Phys. Chem. 1964; 68: 441
    • 66d Chemistry of Organic Fluorine Compounds II . Hudlicky M, Pavlath AE. American Chemical Society; Washington DC: 1995

      For several selected reviews, see:
    • 67a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 67b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 67c Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 67d Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
    • 67e Uneyama K. Organofluorine Chemistry . Blackwell Publishing; Oxford: 2006
  • 68 Kalow JA, Doyle AG. J. Am. Chem. Soc. 2010; 132: 3268
  • 69 Kalow JA, Doyle AG. Tetrahedron 2013; 69: 5702
  • 70 Kalow JA, Doyle AG. J. Am. Chem. Soc. 2011; 133: 16001
  • 71 Igau A, Grutzmacher H, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 1988; 110: 6463
  • 72 Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 73a Enders D, Niemeier O, Balensiefer T. Angew. Chem. Int. Ed. 2006; 45: 1463
    • 73b Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
    • 74a Stetter H. Angew. Chem., Int. Ed. Engl. 1976; 15: 639
    • 74b Enders D, Breuer K, Runsink J, Teles JH. Helv. Chim. Acta 1996; 79: 1899
    • 74c Jousseaume T, Wurz NE, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1410
  • 75 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719

    • For several selected reviews, see:
    • 76a Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 76b Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
  • 77 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
  • 78 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2011; 133: 4694
  • 79 Gillard RM, Fernando JE. M, Lupton DW. Angew. Chem. Int. Ed. 2018; 57: 4712
  • 80 Zhang C, Lupton DW. Org. Lett. 2017; 19: 4456
  • 81 Candish L, Lupton DW. J. Am. Chem. Soc. 2013; 135: 58
  • 82 Cao J, Gillard R, Jahanbakhsh A, Breugst M, Lupton DW. ACS Catal. 2020; 10: 11791
  • 83 Meng Q.-Y, Döben N, Studer A. Angew. Chem. Int. Ed. 2020; 59: 19956
  • 84 Liu K, Studer A. J. Am. Chem. Soc. 2021; 143: 4903
  • 85 Meng Q.-Y, Lezius L, Studer A. Nat. Commun. 2021; 12: 2068
  • 86 Zuo Z, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 25252
  • 87 Yu X, Meng Q.-Y, Daniliuc CG, Studer A. J. Am. Chem. Soc. 2022; 144: 7072
  • 88 Ryan SJ, Schimler SD, Bland DC, Sanford MS. Org. Lett. 2015; 17: 1866
    • 89a Lawrence NJ. In Preparation of Alkenes: A Practical Approach . Williams JM. J. Oxford University Press; Oxford: 1995
    • 89b Kolodiazhnyi OI. Phosphorus Ylides: Chemistry and Applications in Organic Chemistry. Wiley-VCH; New York: 1999
    • 89c Edmonds D, Abell A. The Wittig Reaction. In Modern Carbonyl Olefinations: Methods and Applications. Takeda T. Wiley-VCH; Weinheim: 2004: 1-17
    • 89d Abell A, Edmonds DM. K. In Organophosphorus Reagents . Murphy PJ. Oxford University Press; Oxford: 2004: 99-127
  • 91 Morita K, Suzuki Z, Hirose H. Bull. Chem. Soc. Jpn. 1968; 41: 2815

    • For recent selected reviews, see:
    • 92a Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 92b Ni H, Chan W.-L, Lu Y. Chem. Rev. 2018; 118: 9344
    • 92c Huang Y, Liao J, Wang W, Liu H, Guo H. Chem. Commun. 2020; 56: 15235
    • 92d Li E.-Q, Huang Y. Chem. Commun. 2020; 56: 680
  • 93 Meng G, Szostak M. ACS Catal. 2017; 7: 7251
  • 94 Wang Z, Wang X, Nishihara Y. Catalysts 2019; 9: 574
  • 95 Wang X, Wang Z, Ishida T, Nishihara Y. J. Org. Chem. 2020; 85: 7526
  • 96 Fujimoto H, Kodama T, Yamanaka M, Tobisu M. J. Am. Chem. Soc. 2020; 142: 17323
  • 97 Fujimoto H, Kusano M, Kodama T, Tobisu M. J. Am. Chem. Soc. 2021; 143: 18394

    • For several examples of nucleophilic substitution, see:
    • 98a Posner GH, Whitten CE, McFarland PE. J. Am. Chem. Soc. 1972; 94: 5106
    • 98b Kotun SP, Anderson JD. O, DesMarteau DD. J. Org. Chem. 1992; 57: 1124
    • 98c Wiles C, Watts P, Haswell SJ, Pombo-Villar E. Chem. Commun. 2002; 1034
    • 98d Woods PA, Morrill LC, Lebl T, Slawin AM. Z, Bragg RA, Smith AD. Org. Lett. 2010; 12: 2660
    • 98e Birrell JA, Desrosiers J.-N, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 13872
    • 98f Umezawa T, Seino T, Matsuda F. Org. Lett. 2012; 14: 4206
  • 99 Wang Z, Matsumoto A, Maruoka K. Chem. Sci. 2020; 11: 12323
  • 100 Brittain WD. G, Cobb SL. Org. Lett. 2021; 23: 5793
  • 101 Fu L, Chen Q, Nishihara Y. Org. Lett. 2020; 22: 6388
  • 102 Liang Y, Taya A, Zhao Z, Saito N, Shibata N. Beilstein J. Org. Chem. 2020; 16: 3052
  • 103 Li H, Peng M, Lai Z, Ning L, Chen X, Zhang X, Wang P, Szostak R, Szostak M, An J. Chem. Commun. 2021; 57: 5195
  • 104 Ishida N, Iwamoto H, Sunagawa DE, Ohashi M, Ogoshi S. Synthesis 2021; 53: 3137