CC BY-NC-ND 4.0 · Synthesis 2022; 54(22): 4883-4894
DOI: 10.1055/a-1877-5231
short review

Photochemical Activation of Sulfur Hexafluoride: A Tool for Fluorination and Pentafluorosulfanylation Reactions

David Rombach
a   Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
,
b   Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
› Author Affiliations
Financial support from the Deutsche Forschungsgemeinschaft (DFG) (Wa 1386/16-2), the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF) (Swiss National Science Foundation) (CRSK-2_195863) and the Karlsruhe Institute of Technology (KIT) is gratefully acknowledged. D.R. thanks H.A.W., Prof. Dr. Antonio Togni and Prof. Dr. Erick M. Carreira for their continuous and generous support.


Abstract

The photoactivation of notoriously inert sulfur hexafluoride represents a challenge for photochemistry. This short review summarizes recently published efforts and the corresponding photochemical mechanisms for switching between the fluorination and pentafluorosulfanylation reactivity of organic substrates.

1 Introduction

2 Sulfur Hexafluoride (SF6)

3 The Pentafluorosulfanyl (SF5) Group

4 Photoredox Catalytic Activation of SF6

5 Conclusions



Publication History

Received: 21 April 2022

Accepted after revision: 08 June 2022

Accepted Manuscript online:
16 June 2022

Article published online:
25 August 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Glaser F, Kerzig C, Wenger OS. Angew. Chem. Int. Ed. 2020; 59: 10266
    • 1b Rehm TH. ChemPhotoChem 2019; 3: 1
    • 1c Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
    • 1d Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 2a Pagire SK, Föll T, Reiser O. Acc. Chem. Res. 2020; 53: 782
    • 2b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 2c Marzo L, Paigre SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 2d Capaldo L, Ravelli D. Eur. J. Org. Chem. 2020; 2783
    • 2e Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 2f Rigotti T, Alemán J. Chem. Commun. 2020; 56: 11169
  • 3 Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
  • 4 Mateus-Ruiz JB, Cordero-Vargas A. Synthesis 2020; 52: 3111
  • 5 Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
    • 6a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 6b Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
  • 7 Hari DP, König B. Chem. Commun. 2014; 50: 6688
  • 8 Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
  • 9 Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
  • 10 Zilate B, Fischer C, Sparr C. Chem. Commun. 2020; 56: 1767
  • 11 Mateos J, Rigodanza F, Vega-Penaloza A, Sartorel A, Natali M, Bortolato T, Pelosi G, Companyó X, Bonchio M, Dell’Amico L. Angew. Chem. Int. Ed. 2020; 59: 1303
  • 12 Ogle MM, McWilliams AD. S, Jiang B, Marti AA. ChemPhotoChem 2020; 4: 255
    • 13a Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
    • 13b Singh PP, Srivastava V. Org. Biomol. Chem. 2021; 19: 313
  • 14 Vega-Penaloza A, Mateos J, Comanyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2020; 60: 1082
  • 15 Sakakibara Y, Murakami K. ACS Catal. 2022; 12: 1857
  • 16 Savoie PR, Welch JT. Chem. Rev. 2015; 115: 1130
  • 17 Altomonte S, Zanda M. J. Fluorine Chem. 2012; 143: 57
  • 18 Xiao H, Zhang Z, Fang Y, Zhu L, Li C. Chem. Soc. Rev. 2021; 50: 6308
  • 19 Magre M, Ni S, Cornella J. Angew. Chem. Int. Ed. 2022; 61: e202200904
    • 20a Shultz ZP, Scattolin T, Wojtas L, Lopchuk JM. Nat. Synth. 2022; 1: 170
    • 20b Brighty GJ, Botham RC, Li S, Nelson L, Mortenson DE, Li G, Morisseau C, Wang H, Hammock BD, Sharpless KB, Kelly JW. Nat. Chem. 2020; 12: 906
    • 20c Lee C, Cook AJ, Elisabeth JE, Friede NC, Sammis GM, Ball ND. ACS Catal. 2021; 11: 6578
    • 20d Lücking U. Org. Chem. Front. 2019; 6: 1319
  • 21 Meshri DT. Industrial Applications of Inorganic Fluorides. In Advanced Inorganic Fluorides: Synthesis, Characterization and Applications, Chap. 20. Nakajima T, Žemva B, Tressaud A. Elsevier; Lausanne: 2000: 661-682
  • 22 Case JR, Nyman F. Nature 1962; 193: 473
    • 23a Climate Change 1995: The Science of Climate Change . Houghton JT, Filho LG. M, Callander BA, Harris N, Kattenberg A, Maskell K. Cambridge University Press; Cambridge: 1995
    • 23b Hodnebrog Ø, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen CJ, Shine KP, Wallington TJ. Rev. Geophys. 2013; 51: 300
  • 24 Christophorou LG, Olthoff JK, Brunt RJ. V. IEEE Electr. Insul. Mag. 1997; 13: 20
  • 25 Wang C.-LJ. Org. React. 2004; 34: 319
  • 26 Haufe G. Tetrahedron 2022; 109: 132656
    • 27a Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 27b Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Sancineto L, Santi C. Molecules 2022; 27: 1643
    • 27c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 27d Johnson BM, Shu Y.-Z, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
  • 28 Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem. Rev. 2022; 122: 167
    • 29a Jeschke P. ChemBioChem 2004; 4: 570
    • 29b Cartwright D. Recent Developments in Fluorine-Containing Agrochemicals. In Organofluorine Chemistry: Principles and Commercial Applications. Banks RE, Smart BE, Tatlow JC. Springer US; Boston: 1994: 237-262
    • 29c Theodoridis G. Fluorine-Containing Agrochemicals: An Overview of Recent Developments. In Advances in Fluorine Science, Vol. 2, Chap. 4. Tressaud A. Elsevier; Amsterdam: 2006: 121-175
    • 29d Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
    • 29e Haufe G, Leroux FR. Fluorine in Life Sciences: Pharmaceutical, Medicinal Diagnostics, and Agrochemicals, Vol. 4. Elsevier; Amsterdam: 2019: 1-686
    • 29f Pazenok S, Leroux FR. Modern Fluorine-Containing Agrochemicals . In Frontiers of Organofluorine Chemistry . Ojima I. World Scientific Publishing Europe; London: 2019: 695-732
    • 29g Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
    • 30a Gautam P, Yu CP, Zhang G, Hillier VE, Chan JM. W. J. Org. Chem. 2017; 82: 11008
    • 30b Alamiry MA. H, Benniston AC, Hagon J, Winstanley TP. L, Lemmetyinen H, Tkachenko NV. RSC Adv. 2012; 2: 4944
    • 30c Casa S, Henary M. Molecules 2021; 26: 1160
    • 30d Matsui M. Fluorine-Containing Dyes . In Functional Dyes, Chap. 7. Kim S.-H. Elsevier Science; Amsterdam: 2006: 257-266
    • 30e Sletten EM, Swager TM. J. Am. Chem. Soc. 2014; 136: 13574
    • 30f Kolmakov K, Hebisch E, Wolfram T, Nordwig LA, Wurm CA, Ta H, Westphal V, Belov VN, Hell SW. Chem. Eur. J. 2015; 21: 13344
    • 31a Kirsch P. J. Fluorine Chem. 2015; 177: 29
    • 31b Babudri F, Farinola GM, Naso F, Ragni R. Chem. Commun. 2007; 1003
    • 31c Sutton JJ, Li Y, Ryu HS, Tay EJ, Woo HY, Gordon KC. J. Phys. Chem. A 2020; 124: 7685
    • 32a Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 32b Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 32c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 33 Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 34a Haupt A, Duvinage D, Lork E, Ponomarenko M, Röschenthaler G.-V. Angew. Chem. Int. Ed. 2021; 60: 17866
    • 34b Milcent T, Crousse B. Compt. Rend. Chim. 2018; 21: 771
    • 34c Nielsen CD. T, Zivkovic FG, Schoenebeck F. J. Am. Chem. Soc. 2021; 143: 13029
    • 34d Scattolin T, Bouayad-Gervais S, Schoenebeck F. Nature 2019; 573: 102
    • 34e Scattolin T, Deckers K, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 221
    • 34f Das P, Takada M, Tokunaga E, Saito N, Shibata N. Org. Chem. Front. 2018; 5: 719
    • 34g Iwaki K, Maruno K, Nagata O, Shibata N. J. Org. Chem. 2022; 87: 6302
    • 34h Niina K, Tanagawa K, Sumii Y, Saito N, Shibata N. Org. Chem. Front. 2020; 7: 1276
  • 35 Sowaileh MF, Hazlitt RA, Colby DA. ChemMedChem 2017; 12: 1481
    • 36a Jose A, Guest D, LeGay R, Tizzard GJ, Coles SJ, Derveni M, Wright E, Marrison L, Lee AA, Morris A, Robinson M, von Delft F, Fearon D, Koekemoer L, Matviuk T, Aimon A, Schofield CJ, Malla TR, London N, Greenland BW, Bagley MC, Spencer J. ChemMedChem 2022; 17: e202100641
    • 36b Sansook S, Ocasio CA, Day IJ, Tizzard GJ, Coles SJ, Fedorov O, Bennett JM, Elkins JM, Spencer J. Org. Biomol. Chem. 2017; 15: 8655
    • 36c Grigolato L, Brittain WD. G, Hudson AS, Czyzewska MM, Cobb SL. J. Fluorine Chem. 2018; 212: 166
    • 36d Zhang Y, Wang Y, He C, Liu X, Lu Y, Chen T, Pan Q, Xiong J, She M, Tu Z, Qin X, Li M, Tortorella MD, Talley JJ. J. Med. Chem. 2017; 60: 4135
    • 36e Naclerio GA, Abutaleb NS, Alhashimi M, Seleem MN, Sintim HO. Int. J. Mol. Sci. 2021; 22: 2427
    • 36f Elek M, Djokovic N, Frank A, Oljacic S, Zivkovic A, Nikolic K, Stark H. Arch. Pharm. 2021; 354: 2000486
    • 36g Jose A, Tareque RK, Mortensen M, Legay R, Coles SJ, Tizzard GJ, Greenland BW, Smart TG, Bagley MC, Spencer J. Tetrahedron 2021; 85: 132020
    • 36h Naclerio GA, Abutaleb NS, Onyedibe KI, Seleem MN, Sintim HO. RSC Med. Chem. 2020; 11: 102
    • 36i Shao P, Zhou Y, Yang D, Wang M.-W, Lu W, Jin J. Molecules 2019; 24: 4227
    • 36j Pertusati F, Ferla S, Bassetto M, Brancale A, Khandil S, Westwell AD, McGuigan C. Eur. J. Med. Chem. 2019; 180: 1
    • 36k Jin J, Zhou Y, Yang D, Zhang Q, Wang M.-W, Lu W. Arch. Pharm. 2018; 351: 1800175
    • 37a Nakayama H, Nishida J.-i, Takada N, Sato H, Yamashita Y. Chem. Mater. 2012; 24: 671
    • 37b Iida N, Tanaka K, Tokunaga E, Mori S, Saito N, Shibata N. ChemistryOpen 2015; 4: 698
    • 37c Iida N, Tokunaga E, Saito N, Shibata N. J. Fluorine Chem. 2015; 171: 120
    • 37d Groves LM, Schotten C, Beames J, Platts JA, Coles SJ, Horton PN, Browne DL, Pope SJ. A. Chem. Eur. J. 2017; 23: 9407
    • 37e Shen W, Zhang W, Zhu C. Phys. Chem. Chem. Phys. 2017; 19: 23532
    • 37f Qing S.-Y, DeWeerd NJ, Matsnev AV, Strauss SH, Thrasher JS, Boltalina OV. J. Fluorine Chem. 2018; 211: 52
    • 37g Webster SJ, López-Alled CM, Liang X, McMullin CL, Kociok-Köhn G, Lyall CL, James TD, Wenk J, Cameron PJ, Lewis SE. New J. Chem. 2019; 43: 992
    • 37h Kirsch P, Klasen-Memmer M, Tarumi K. Angew. Chem. Int. Ed. 2013; 52: 8880
    • 37i Nixon PG, Winter R, Castner DG, Holcomb NR, Grainger DW, Gard GL. Chem. Mater. 2000; 12: 3108
    • 38a Pal AK, Henwood AF, Cordes DB, Slawin AM. Z, Samuel ID. W, Zysman-Colman E. Inorg. Chem. 2017; 56: 7533
    • 38b Shavaleev NM, Xie G, Varghese S, Cordes DB, Slawin AM. Z, Momblona C, Ortí E, Bolink HJ, Samuel ID. W, Zysman-Colman E. Inorg. Chem. 2015; 54: 5907
    • 38c Henwood AF, Webster J, Cordes D, Slawin AM. Z, Jacquemin D, Zysman-Colman E. RSC Adv. 2017; 7: 25566
    • 38d Pal AK, Cordes DB, Slawin AM. Z, Momblona C, Ortí E, Samuel ID. W, Bolink HJ, Zysman-Colman E. Inorg. Chem. 2016; 55: 10361
  • 39 Noonikara-Poyil A, Munoz-Castro A, Boretsky A, Mykhailiuk PK, Dias HV. R. Chem. Sci. 2021; 12: 14618
    • 40a Welch JT, Lim DS. Bioorg. Med. Chem. 2007; 15: 6659
    • 40b Altomonte S, Baillie GL, Ross RA, Riley J, Zanda M. RSC Adv. 2014; 4: 20164
    • 40c Kim JG, Kang O.-Y, Kim SM, Issabayeva G, Oh IS, Lee Y, Lee WH, Lim HJ, Park SJ. Molecules 2020; 25: 5536
    • 40d Qianzhu H, Welegedara AP, Williamson H, McGrath AE, Mahawaththa MC, Dixon NE, Otting G, Huber T. J. Am. Chem. Soc. 2020; 142: 17277
  • 41 Prinz C, Starke L, Ramspoth T.-F, Kerkering J, Martos Riaño V, Paul J, Neuenschwander M, Oder A, Radetzki S, Adelhoefer S, Ramos Delgado P, Aravina M, Millward JM, Fillmer A, Paul F, Siffrin V, von Kries J.-P, Niendorf T, Nazaré M, Waiczies S. ACS Sens. 2021; 6: 3948
  • 42 Saccomanno M, Hussain S, O’Connor NK, Beier P, Somlyay M, Konrat R, Murphy CD. Biodegradation 2018; 29: 259
  • 43 Lim DS, Choi JS, Pak CS, Welch JT. J. Pest. Sci. 2007; 32: 255
  • 44 Kavanagh E, Winn M, Gabhann CN, O’Connor NK, Beier P, Murphy CD. Env. Sci. Pollut. Res. Int. 2014; 21: 753
  • 45 Sheppard WA. J. Am. Chem. Soc. 1962; 84: 3072
  • 46 Silvey GA, Cady GH. J. Am. Chem. Soc. 1950; 72: 3624
  • 47 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
  • 48 Wang L, Cornella J. Angew. Chem. Int. Ed. 2020; 59: 23510
  • 49 Ou X, Bernard GM, Janzen AF. Can. J. Chem. 1997; 75: 1875
  • 50 Umemoto T, Garrick LM, Saito N. Beilstein J. Org. Chem. 2012; 8: 461
  • 51 Pitts CR, Bornemann D, Liebing P, Santschi N, Togni A. Angew. Chem. Int. Ed. 2019; 58: 1950
  • 52 Wang L, Ni S, Cornella J. Synthesis 2021; 53: 4308
    • 53a Lee HM, Chang MB, Wu KY. J. Air Waste Manage. Assoc. 2004; 54: 960
    • 53b Lee MC, Choi W. J. Ind. Eng. Chem. 2004; 10: 107
  • 54 Li H, Dinghong G, Longyu Y, Lanyan X, Renxi Z, Huiqi H. J. Env. Sci. 2008; 20: 183
  • 55 Harvey BG, Arif AM, Glöckner A, Ernst RD. Organometallics 2007; 26: 2872
  • 56 Berg C, Braun T, Ahrens M, Wittwer P, Herrmann R. Angew. Chem. Int. Ed. 2017; 56: 4300
  • 57 Buß F, Mück-Lichtenfeld C, Mehlmann P, Dielmann F. Angew. Chem. Int. Ed. 2018; 57: 4951
  • 58 Rueping M, Nikolaienko P, Lebedev Y, Adams A. Green Chem. 2017; 19: 2571
  • 59 Weitkamp RF, Neumann B, Stammler H.-G, Hoge B. Chem. Eur. J. 2021; 27: 6460
  • 60 Bouvet S, Pégot B, Sengmany S, Gall EL, Léonel E, Goncalves A.-M, Magnier E. Beilstein J. Org. Chem. 2020; 16: 2948
  • 61 Sheldon DJ, Crimmin MR. Chem. Commun. 2021; 57: 7096
  • 62 Cheung YS, Chen YJ, Ng CY, Chiu S.-W, Li W.-K. J. Am. Chem. Soc. 1995; 117: 9725
  • 63 Kim S, Khomutnyk Y, Bannykh A, Nagorny P. Org. Lett. 2021; 23: 190
  • 64 Chen EC, Shuie L.-R, D’sa ED, Batten CF, Wentworth WE. J. Chem. Phys. 1998; 88: 4711
  • 65 Drzaic PS, Brauman JI. J. Am. Chem. Soc. 1982; 104: 13
  • 66 Akhgarnusch A, Höckendorf RF, Beyer MK. J. Phys. Chem. A 2015; 119: 9978
  • 67 Troe J, Miller TM, Viggiano AA. J. Chem. Phys. 2007; 127: 244304
    • 68a Chen CL, Chantry PJ. J. Chem. Phys. 1979; 71: 3897
    • 68b Sauers I, Harman G. J. Phys. D: Appl. Phys. 1992; 25: 774
    • 68c Streit GE. J. Chem. Phys. 1982; 77: 826
    • 68d Christophorou LG, Olthoff JK. Int. J. Mass Spectr. 2001; 205: 27
  • 69 Iakobson G, Pošta M, Beier P. J. Fluorine Chem. 2018; 213: 51
  • 70 McTeague TA, Jamison TF. Angew. Chem. Int. Ed. 2016; 55: 15072
  • 71 Shon J.-H, Kim D, Rathnayake MD, Sittel S, Weaver J, Teets TS. Chem. Sci. 2021; 12: 4069
  • 72 Cram DJ. J. Am. Chem. Soc. 1953; 75: 332
  • 73 Kim S, Nagorny P. Org. Lett. 2022; 12: 2294
  • 74 Tomar P, Braun T, Kemnitz E. Chem. Commun. 2018; 54: 9753
  • 75 Huang S, Wang Y, Hu C, Yan X. Chem. Asian J. 2021; 16: 2687
  • 76 De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F. Org. Lett. 2007; 9: 2721
  • 77 Rombach D, Wagenknecht H.-A. ChemCatChem 2018; 10: 2955
  • 78 Pacansky J, Liu B. J. Chem. Phys. 1977; 66: 4818
  • 79 Kirsch P, Roeschenthaler G.-V, Sevenrard D, Kolomeitsev A. DE10220901A1, 2002
  • 80 Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Angew. Chem. Int. Ed. 2022; 61: e202204623
  • 81 Speck F, Rombach D, Wagenknecht H.-A. Beilstein J. Org. Chem. 2019; 15: 52
  • 82 Weick F, Steuernagel D, Belov A, Wagenknecht H.-A. Synlett 2022; 33: 1199
  • 83 Christensen JA, Phelan BT, Chaudhuri S, Acharya A, Batista VS, Wasielewski MR. J. Am. Chem. Soc. 2018; 140: 5290
  • 84 Moutet J.-C, Reverdy G. Tetrahedron Lett. 1979; 20: 2389
  • 85 Giese B. Angew. Chem. Int. Ed. 1983; 22: 753
  • 86 Zhang X, Liao Y, Qian R, Wang H, Guo Y. Org. Lett. 2005; 7: 3877
  • 87 Rombach D, Wagenknecht H.-A. Angew. Chem. Int. Ed. 2020; 59: 300
  • 88 Rombach D, Birenheide B, Wagenknecht H.-A. Chem. Eur. J. 2021; 27: 8088