Synthesis 2022; 54(24): 5409-5422
DOI: 10.1055/a-1900-8895
short review

Photoredox-Mediated Desulfonylative Radical Reactions: An Excellent Approach Towards C–C and C–Heteroatom Bond Formation

Biprajit Paul
,
Hrishikesh Paul
,
Indranil Chatterjee
I. C. wishes to acknowledge the financial assistance from the Council of Scientific and Industrial Research, India (CSIR, 02 (0437)/21/EMR-II) and the Indian Institute of Technology Ropar (IIT Ropar). Biprajit and Hrishikesh want to acknowledge Prime Minister’s Research Fellows (PMRF), Ministry of Education (MOE), New Delhi, and University Grants Commission (UGC), New Delhi, respectively, for their research fellowships.


Abstract

In recent times, desulfonylative radical-cross-coupling (RCC) has come to the forefront in synthetic organic, bio, and material chemistry as a powerful strategy to form C–C and C–heteroatom bonds. Diverse functionalization through metal- and photoredox-catalyzed desulfonylation reactions has attracted the scientific community due to the mild reaction conditions, wide functional group tolerance, and excellent synthetic efficacy. In this review, we have highlighted photoredox-mediated desulfonylation reactions developed since 2000. This review will summarize the newly reported methodologies, with particular emphasis on their mechanistic aspects and selectivity issues which have paved a new way towards sustainable C–C and C–X (X = H or heteroatom) bond formation.

1 Introduction

2 Photoredox-Catalyzed C–C Bond Formation

2.1 Aryl Sulfones as Radical Precursor

2.2 Reactions of Allyl Sulfones

3 Photoredox-Catalyzed C–Heteroatom Bond Formation

4 Conclusion



Publication History

Received: 09 June 2022

Accepted after revision: 14 July 2022

Accepted Manuscript online:
14 July 2022

Article published online:
31 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
    • 1b Zhang X, Chen K, Sun Z, Hu G, Xiao R, Cheng HM, Li F. Energy Environ. Sci. 2020; 13: 1076
    • 1c Shadike Z, Tan S, Wang QC, Lin R, Hu E, Qu D, Yang XQ. Mater. Horiz. 2021; 8: 471
  • 2 Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P. Chem. Rev. 2017; 117: 4147
    • 3a Petrini M. Chem. Rev. 2005; 105: 3949
    • 3b Marcantoni E, Palmieri A, Petrini M. Org. Chem. Front. 2019; 6: 2142
    • 3c Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193
    • 3d Gomes GP, Wimmer A, Smith JM, König B, Alabugin IV. J. Org. Chem. 2019; 84: 6232
    • 4a Fang K, Xie M, Zhang Z, Ning P, Shu G. Tetrahedron Lett. 2013; 54: 3819
    • 4b Markovic T, Rocke BN, Blakemore DC, Mascitti V, Willis MC. Org. Lett. 2017; 19: 6033
    • 4c Ghosh S, Kumar G, Naveen, Pradhan S, Chatterjee I. Chem. Commun. 2019; 55: 13590
    • 4d Chatelain P, Sau A, Rowley CN, Moran J. Angew. Chem., Int. Ed. 2019; 58: 14959
    • 4e Nambo M, Tahara Y, Yim JC. H, Crudden CM. Chem. Eur. J. 2019; 25: 1923
    • 4f Miao W, Ni C, Xiao P, Jia R, Zhang W, Hu J. Org. Lett. 2021; 23: 711
    • 5a Heck RF. J. Am. Chem. Soc. 1969; 91: 6707
    • 5b Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
    • 5c King AO, Okukado N, Negishi EI. J. Chem. Soc., Chem. Commun. 1977; 683
    • 5d Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
    • 5e Kosugi M, Sasazawa K, Shimizu Y, Migita T. Chem. Lett. 1977; 6: 301
    • 6a Nielsen M, Jacobsen CB, Holub N, Paixão MW, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 2668
    • 6b Hervieu C, Kirillova MS, Suárez T, Müller M, Merino E, Nevado C. Nat. Chem. 2021; 13: 327
    • 7a Pettus TR. R, Chen XT, Danishefsky SJ. J. Am. Chem. Soc. 1998; 120: 12684
    • 7b Ghosh AK, Wang Y. Tetrahedron Lett. 2000; 41: 2319
    • 7c Marino JP, Mcclure MS, Holub DP. J. Am. Chem. Soc. 2002; 124: 1664
    • 7d Bonini C, Chiummiento L, Pullez M, Solladié G, Colobert F. J. Org. Chem. 2004; 69: 5015
    • 8a House H, Larson JK. J. Org. Chem. 1968; 33: 61
    • 8b Brown AC, Carpino LA. J. Org. Chem. 1985; 50: 1749
    • 8c Fujii M, Nakamura K, Mekata H, Oka S, Ohno A. Bull. Chem. Soc. Jpn. 1988; 61: 495
    • 8d Smith AB. III, Hale JK, McCauly JP. Tetrahedron Lett. 1989; 30: 5579
    • 8e Benedetti F, Berti F, Risaliti A. Tetrahedron Lett. 1993; 34: 6443
    • 9a Little RD, Myong SO. Tetrahedron Lett. 1980; 21: 3339
    • 9b Hwu JR. J. Org. Chem. 1983; 48: 4432

      For reviews see:
    • 10a Nájera C, Yus M. Tetrahedron 1999; 55: 10547
    • 10b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 10c Haria DP, König B. Chem. Commun. 2014; 50: 6688
    • 10d Srivastava V, Singh PP. RSC Adv. 2017; 7: 31377
    • 10e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 10f Chu X, Ge D, Cui Y, Shen Z, Li C. Chem. Rev. 2021; 121: 12548
    • 11a Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
    • 11b Roy S, Chatterjee I. ACS Org. Inorg. Au 2022; 2: 306
  • 12 Liu Q, Han B, Liu Z, Yang L, Liu ZL, Yu W. Tetrahedron Lett. 2006; 47: 1805
  • 13 Hong X, Mejía-Oneto JM, France S, Padwa A. Tetrahedron Lett. 2006; 47: 2409
  • 14 Yang D.-T, Meng Q.-Y, Zhong J.-J, Xiang M, Liu Q, Wu L.-Z. Eur. J. Org. Chem. 2013; 2013: 7528
  • 15 Xuan J, Li B.-J, Feng Z.-J, Sun G.-D, Ma H.-H, Yuan Z.-W, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Asian J. 2013; 8: 1090
  • 16 Xuan J, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2014; 20: 3045
  • 17 Rong J, Deng L, Tan P, Ni C, Gu Y, Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
  • 18 Fu W, Han X, Zhu M, Xu C, Wang Z, Ji B, Hao X.-Q, Song M.-P. Chem. Commun. 2016; 52: 13413
  • 19 Monos TM, McAtee RC, Stephenson CR. J. Science 2018; 361: 1369
  • 20 Wang ZJ, Zheng S, Matsui JK, Lu Z, Molander GA. Chem. Sci. 2019; 10: 4389
  • 21 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
  • 22 Liu Q, Liu Y.-X, Song H.-J, Wang Q.-M. Adv. Synth. Catal. 2020; 362: 3110
  • 23 Hunter CJ, Boyd MJ, May GD, Fimognari R. J. Org. Chem. 2020; 85: 8732
  • 24 Heredia MD, Guerra WD, Barolo SM, Fornasier SJ, Rossi RA, Budén ME. J. Org. Chem. 2020; 85: 13481
  • 25 Josephson B, Fehl C, Isenegger PG, Nadal S, Wright TH, Poh AW. J, Bower BJ, Giltrap AM, Chen L, Batchelor-McAuley C, Roper G, Arisa O, Sap JB. I, Kawamura A, Baldwin AJ, Mohammed S, Compton RG, Gouverneur V, Davis BG. Nature 2020; 585: 530
  • 26 Hasegawa E, Tanaka T, Izumiya N, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S. J. Org. Chem. 2020; 85: 4344
    • 27a Hasegawa E, Kato T, Kitazume T, Yanagi K, Hasegawa K, Horaguchi T. Tetrahedron Lett. 1996; 37: 7079
    • 27b Hasegawa E, Seida T, Chiba N, Hart C. J. Org. Chem. 2005; 70: 9632
    • 27c Hasegawa E, Takizawa S, Seida T, Yamaguchi A, Yamaguchi N, Chiba N, Takahashi T, Ikeda H, Akiyama K. Tetrahedron 2006; 62: 6581
    • 27d Hasegawa E, Nagakura Y, Izumiya N, Matsumoto K, Tanaka T, Miura T, Ikoma T, Iwamoto H, Wakamatsu K. J. Org. Chem. 2018; 83: 10813
  • 28 Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. J. Org. Chem. 2021; 86: 2556
  • 29 Sengoku T, Ogawa D, Iwama H, Inuzuka T, Yoda H. Chem. Commun. 2021; 57: 9858
  • 30 Patel S, Paul B, Paul H, Shankhdhar R, Chatterjee I. Chem. Commun. 2022; 58: 4857
  • 31 Noten EA, McAtee RC, Stephenson CR. J. Chem. Sci. 2022; 13: 6942
    • 33a Ueno Y, Aoki S, Okawara M. J. Am. Chem. Soc. 1979; 101: 5414
    • 33b Lansbury PT, Erwin RW, Jeffrey DA. J. Am. Chem. Soc. 1980; 102: 1602
    • 33c Ueno Y, Sano H, Aoki S, Okawara M. Tetrahedron Lett. 1981; 22: 2775
    • 33d Caturla F, Nájera C. Tetrahedron Lett. 1996; 37: 4787
    • 33e Mccarthy JR, Huber EW, Le T, Laskovics FM, Matthewst DP. Tetrahedron 1996; 52: 45
    • 34a Cui L, Chen H, Liu C, Li C. Org. Lett. 2016; 18: 2188
    • 34b Markovic T, Murray PR. D, Rocke BN, Shavnya A, Blakemore DC, Willis MC. J. Am. Chem. Soc. 2018; 140: 15916
    • 34c Sumino S, Uno M, Huang HJ, Wu YK, Ryu I. Org. Lett. 2018; 20: 1078
    • 34d Li X, Zhang R, Zhang X, Zhu P, Yao T. Chem. Asian J. 2020; 15: 1175
    • 35a Larraufie MH, Pellet R, Fensterbank L, Goddard JP, Lacôte E, Malacria M, Ollivier C. Angew. Chem. Int. Ed. 2011; 50: 4463
    • 35b Baralle A, Fensterbank L, Goddard J.-P, Ollivier C. Chem. Eur. J. 2013; 19: 10809
    • 35c Donck S, Baroudi A, Fensterbank L, Goddard J.-P, Ollivier C. Adv. Synth. Catal. 2013; 355: 1477
    • 35d Corcé V, Chamoreau L.-M, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
  • 36 Hu C, Chen Y. Org. Chem. Front. 2015; 2: 1352
  • 37 Kamijo S, Kamijo K, Maruoka K, Murafuji T. Org. Lett. 2016; 18: 6516
  • 38 Fuentes de Arriba AL, Urbitsch F, Dixon DJ. Chem. Commun. 2016; 52: 14434
  • 39 Duan Y, Zhang M, Ruzi R, Wu Z, Zhu C. Org. Chem. Front. 2017; 4: 525
  • 40 Huang X, Luo S, Burghaus O, Webster RD, Harms K, Meggers E. Chem. Sci. 2017; 8: 7126
  • 41 Dossena A, Sampaolesi S, Palmieri A, Protti S, Fagnoni M. J. Org. Chem. 2017; 82: 10687
  • 42 Zhao Q.-Q, Chen J, Yan D.-M, Chen J.-R, Xiao W.-J. Org. Lett. 2017; 19: 3620
  • 43 Zhang MM, Liu F. Org. Chem. Front. 2018; 5: 3443
  • 44 Uno M, Sumino S, Fukuyama T, Matsuura M, Kuroki Y, Kishikawa Y, Ryu I. J. Org. Chem. 2019; 84: 9330
  • 45 Liu H, Ge L, Wang D.-X, Chen N, Feng C. Angew. Chem. Int. Ed. 2019; 58: 3918
  • 46 Wu K, Wang L, Colón-Rodríguez S, Flechsig G, Wang T. Angew. Chem. Int. Ed. 2019; 58: 1774
  • 47 Ramirez NP, Lana-Villarreal T, Gonzalez-Gomez JC. Eur. J. Org. Chem. 2020; 2020: 1539
  • 48 Wang X, Dong J, Li Y, Liu Y, Wang Q. J. Org. Chem. 2020; 85: 7459
    • 49a Maier ME. Org. Biomol. Chem. 2015; 13: 5302
    • 49b Tanifuji R, Minami A, Oguri H, Oikawa H. Nat. Prod. Rep. 2020; 37: 1098
    • 49c Moral JF. Q, Pérez Á, Barrero AF. Phytochem. Rev. 2020; 19: 559
    • 50a Hartwig JF. Nature 2008; 455: 314
    • 50b Dhakshinamoorthy A, Asiri AM, Garcia H. ACS Catal. 2019; 9: 1081
    • 50c Cavedon C, Seeberger PH, Pieber B. Eur. J. Org. Chem. 2020; 2020: 1379
    • 51a Yang Y, Hou W, Qin L, Du J, Feng H, Zhou B, Li Y. Chem. Eur. J. 2014; 20: 416
    • 51b Ye X, Petersen JL, Shi X. Chem. Commun. 2015; 51: 7863
    • 51c Xiao F, Chen S, Li C, Huang H, Deng GJ. Adv. Synth. Catal. 2016; 358: 3881
    • 51d Dodds AC, Sutherland A. J. Org. Chem. 2021; 86: 5922
    • 52a Thurow S, Penteado F, Perin G, Jacob RG, Alves D, Lenardão EJ. Green Chem. 2014; 16: 3854
    • 52b Wang Q, Qi Z, Xie F, Li X. Adv. Synth. Catal. 2015; 357: 355
    • 52c Panja S, Paul B, Jalal S, Ghosh T, Ranu BC. ChemistrySelect 2020; 5: 14198
    • 52d Wang JH, Lei T, Wu HL, Nan XL, Li XB, Chen B, Tung CH, Wu LZ. Org. Lett. 2020; 22: 3804
  • 53 Ghiazza C, Debrauwer V, Monnereau C, Khrouz L, Médebielle M, Billard T, Tlili A. Angew. Chem. Int. Ed. 2018; 57: 11781
  • 54 Li J, Yang X.-E, Wang S.-L, Zhang L.-L, Zhou X.-Z, Wang S.-Y, Ji S.-J. Org. Lett. 2020; 22: 4908
  • 55 Dong Y, Ji P, Zhang Y, Wang C, Meng X, Wang W. Org. Lett. 2020; 22: 9562
  • 56 Wang F, Wang S.-Y. Org. Chem. Front. 2021; 8: 1976