Synlett 2022; 33(19): 1879-1883
DOI: 10.1055/a-1908-2066
synpacts

Translation of a Phosphine- and Azide-Based Reaction to Chemical Modification of Biomolecules in Ionic Liquid

,
Jun Ohata
This work was financially supported by North Carolina State University.


Abstract

The difference of reaction design principles between traditional, small-molecule synthetic chemistry and biomolecular chemical reactions prevented the simple translation of small-molecule chemistry into biomolecular reactions. One of the key challenges of bioconjugation, or reactions on biomolecules, are the necessity of aqueous solutions as the solvent. In this Synpacts article, we describe our pursuit of using an ionic liquid as a nonaqueous reaction medium to conduct phosphine- and azide-based bioconjugation reactions.



Publication History

Received: 08 July 2022

Accepted after revision: 24 July 2022

Accepted Manuscript online:
24 July 2022

Article published online:
24 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
  • 2 Takaoka Y, Ojida A, Hamachi I. Angew. Chem. Int. Ed. 2013; 52: 4088
  • 3 Chan DS.-H, Kavanagh ME, McLean KJ, Munro Andrew W, Matak-Vinković D, Coyne AG, Abell C. Anal. Chem. 2017; 89: 9976
  • 4 Romney DK, Arnold FH, Lipshutz BH, Li C.-J. J. Org. Chem. 2018; 83. 7319
  • 5 Horváth IT, Anastas PT. Chem. Rev. 2007; 107: 2169
  • 6 Gomes JM, Silva SS, Reis RL. Chem. Soc. Rev. 2019; 48: 4317
  • 7 Shukla SK, Mikkola J.-P. Front. Chem. 2020; 8: 598662
  • 8 Welton T. Biophys. Rev. 2018; 10: 691
  • 9 Madeira Lau R, Van Rantwijk F, Seddon KR, Sheldon RA. Org. Lett. 2000; 2: 4189
  • 10 Chandran A, Ghoshdastidar D, Senapati S. J. Am. Chem. Soc. 2012; 134: 20330
  • 11 Silva SS, Mano JF, Reis RL. Green Chem. 2017; 19: 1208
  • 12 Wang Z, Zheng L, Li C, Zhang D, Xiao Y, Guan G, Zhu W. Carbohydr. Polym. 2013; 94: 505
  • 13 Suzuki S, Hikita H, Hernandez SC, Wada N, Takahashi K. ACS Sustainable Chem. Eng. 2021; 9: 5933
  • 14 Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS. Biomacromolecules 2007; 8: 3740
  • 15 El-Shaffey HM, Gross EJ, Hall YD, Ohata J. J. Am. Chem. Soc. 2021; 143: 12974
  • 16 Porath B, Münzenberg R, Heymanns P, Rademacher P, Boese R, Bläser D, Latz R. Eur. J. Org. Chem. 1998; 1431
  • 17 Wiberg N, Bayer H, Bachhuber H. Angew. Chem., Int. Ed. Engl. 1975; 14: 177
  • 18 Dhenain A, Darwich C, Sabaté CM, Le D.-M, Bougrine A.-J, Delalu H, Lacôte E, Payen L, Guitton J, Labarthe E, Jacob G. Chem. Eur. J. 2017; 23: 9897
  • 19 Eymann J, Joucla L, Jacob G, Raynaud J, Darwich C, Lacôte E. Angew. Chem. Int. Ed. 2021; 60: 1578
  • 20 Shaaban S, Jolit A, Petkova D, Maulide N. Chem. Commun. 2015; 51: 13902
  • 21 Henthorn HA, Pluth MD. J. Am. Chem. Soc. 2015; 137: 15330
  • 22 Yedukondalu N, Vaitheeswaran G, Anees P, Valsakumar MC. Phys. Chem. Chem. Phys. 2015; 17: 29210
  • 23 Lee SW, Miller GA, Campana CF, Maciejewski ML, Trogler WC. J. Am. Chem. Soc. 1987; 109: 5050
  • 24 Fischer W, Anselme JP. J. Am. Chem. Soc. 1967; 89: 5284
  • 25 El-Shaffey HM, Gross EJ, Hall YD, Ohata J. J. Am. Chem. Soc. 2022; 144: 9178
  • 26 Ishizawa S, Tumurkhuu M, Gross EJ, Ohata J. Chem. Sci. 2022; 13: 6749
  • 27 Ishizawa S, Tumurkhuu M, Gross EJ, Ohata J. Chem. Sci. 2022; 13: 1780
  • 28 Wang H, Zhang L, Tu Y, Xiang R, Guo Y.-L, Zhang J. Angew. Chem. Int. Ed. 2018; 57: 15787
  • 29 Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. Chem. Rev. 2020; 120: 4301
  • 30 Berger KJ, Driscoll JL, Yuan M, Dherange BD, Gutierrez O, Levin MD. J. Am. Chem. Soc. 2021; 143: 17366
  • 31 Akio O, Heihachiro A, Hidefumi O, Takashi I, Kentaro Y, Terumitsu K, Chikako K, Hiroshi I. Yakugaku Zasshi 1988; 108: 1056
  • 32 Dielmann F, Back O, Henry-Ellinger M, Jerabek P, Frenking G, Bertrand G. Science 2012; 337: 1526
  • 33 Dervan PB, Squillacote ME, Lahti PM, Sylwester AP, Roberts JD. J. Am. Chem. Soc. 1981; 103: 1120
  • 34 Ohata J, Hall Y, Uzoewulu C, Nizam Z, Ishizawa S, El-Shaffey H. ChemRxiv 2022; preprint; DOI: 10.26434/chemrxiv-2022-k76gn.
  • 35 Helberg J, Oe Y, Zipse H. Chem. Eur. J. 2018; 24: 14387
  • 36 Babin V, Sallustrau A, Loreau O, Caillé F, Goudet A, Cahuzac H, Del Vecchio A, Taran F, Audisio D. Chem. Commun. 2021; 57: 6680
  • 37 Del Vecchio A, Caillé F, Chevalier A, Loreau O, Horkka K, Halldin C, Schou M, Camus N, Kessler P, Kuhnast B, Taran F, Audisio D. Angew. Chem. Int. Ed. 2018; 57: 9744
  • 38 Green O, Finkelstein P, Rivero-Crespo MA, Lutz MD. R, Bogdos MK, Burger M, Leroux J.-C, Morandi B. J. Am. Chem. Soc. 2022; 144: 8717
  • 39 Davies JA, Bull FM, Walker PD, Weir AN. M, Lavigne R, Masschelein J, Simpson TJ, Race PR, Crump MP, Willis CL. Org. Lett. 2020; 22: 6349
  • 40 Yagodkin A, Löschcke K, Weisell J, Azhayev A. Tetrahedron 2010; 66: 2210
  • 41 Carnaroglio D, Martina K, Palmisano G, Penoni A, Domini C, Cravotto G. Beilstein J. Org. Chem. 2013; 9: 2378
  • 42 Sato S, Nakamura K, Nakamura H. ACS Chem. Biol. 2015; 10: 2633
  • 43 Yang Y, Fischer NH, Oliveira MT, Hadaf GB, Liu J, Brock-Nannestad T, Diness F, Lee J.-W. Org. Biomol. Chem. 2022; 20: 4526
  • 44 Mohammed FS, Kitchens CL. Molecules 2016; 21: 24
  • 45 Voskian S, Brown P, Halliday C, Rajczykowski K, Hatton TA. ACS Sustainable Chem. Eng. 2020; 8: 8356
  • 46 Magill AM, Cavell KJ, Yates BF. J. Am. Chem. Soc. 2004; 126: 8717
  • 47 Núñez MG, Farley AJ. M, Dixon DJ. J. Am. Chem. Soc. 2013; 135: 16348
  • 48 Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. J. Am. Chem. Soc. 2004; 126: 5300
  • 49 Clough MT, Geyer K, Hunt PA, Son S, Vagt U, Welton T. Green Chem. 2014; 17: 231
  • 50 Chiarotto I, Mattiello L, Pandolfi F, Rocco D, Feroci M. Front. Chem. 2018; 6: 355
  • 51 Ott LS, Cline ML, Deetlefs M, Seddon KR, Finke RG. J. Am. Chem. Soc. 2005; 127: 5758