Synthesis 2023; 55(11): 1642-1651
DOI: 10.1055/a-1924-2564
short review
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award

Catalytic Dienylation: An Emergent Strategy for the Stereoselective Construction of Conjugated Dienes and Polyenes

Jasimuddin Ahmed
,
Graham C. Haug
,
Viet D. Nguyen
,
Arka Porey
,
Ramon Trevino
,
This work was supported by the National Institute of General Medical Sciences (GM134371) and the Welch Foundation (AX-0047).


Abstract

Stereoselective construction of conjugated dienes and polyenes has remained an enduring synthetic problem owing to the central roles these compounds play in natural product synthesis, methodology, and medicine. This review focuses on recent developments in dienylation as an emerging strategy for the direct installation of unsaturated four-carbon units of conjugated π-systems, outlining the regio- and stereoselectivity, as well as the synthetic scope of reactions with various dienylating reagents and the mechanistic implications of the catalytic cross-coupling processes that are used to enable dienylation.

1 Introduction

2 Sulfolenes

3 1,3-Dienes

4 Small-Ring Dienylation Reagents

5 Pyrones, Alkynes, and Homoallenylboronates

6 Conclusion and Outlook



Publication History

Received: 30 July 2022

Accepted after revision: 15 August 2022

Accepted Manuscript online:
15 August 2022

Article published online:
25 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Inano H, Suzuki K, Ishii-Ohba H, Yamanouchi H, Takahashi M, Wakabayashi K. Carcinogenesis 1993; 14: 2157
    • 1b Rychnovsky SD. Chem. Rev. 1995; 95: 2021
    • 1c Thirsk C, Whiting A. J. Chem. Soc., Perkin Trans. 1 2002; 999
    • 1d Paik IH, Xie SJ, Shapiro TA, Labonte T, Sarjeant AA. N, Baege AC, Posner GH. J. Med. Chem. 2006; 49: 2731
    • 1e Davis SA, Vincent BM, Endo MM, Whitesell L, Marchillo K, Andes DR, Lindquist S, Burke MD. Nat. Chem. Biol. 2015; 11: 481
    • 1f Endo MM, Cioffi AG, Burke MD. Synlett 2016; 27: 337
  • 2 Hoeben FJ. M, Jonkheijm P, Meijer EW, Schenning AP. H. J. Chem. Rev. 2005; 105: 1491
  • 3 Zotchev SB. Curr. Med. Chem. 2003; 10: 211
    • 4a Corey EJ. Angew. Chem. Int. Ed. 2002; 41: 1650
    • 4b Fringuelli F, Taticchi A. The Diels–Alder Reaction: Selected Practical Methods . John Wiley & Sons; Chichester: 2002
    • 4c Bar GL. J, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
    • 4d Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 762
    • 4e Liao L, Jana R, Urkalan KB, Sigman MS. J. Am. Chem. Soc. 2011; 133: 5784
    • 4f Leung JC, Geary LM, Chen T.-Y, Zbieg JR, Krische MJ. J. Am. Chem. Soc. 2012; 134: 15700
    • 4g McNeill E, Ritter T. Acc. Chem. Res. 2015; 48: 2330
    • 4h Timsina YN, Sharma RK, RajanBabu TV. Chem. Sci. 2015; 6: 3994
    • 4i Yang X.-H, Dong VM. J. Am. Chem. Soc. 2017; 139: 1774
    • 4j Sardini SR, Brown MK. J. Am. Chem. Soc. 2017; 139: 9823
    • 4k Tortajada A, Ninokata R, Martin R. J. Am. Chem. Soc. 2018; 140: 2050
  • 5 Modern Carbonyl Olefination . Takeda T. Wiley-VCH; Weinheim: 2004
    • 6a Mehta G, Prakash Rao HS. Patai’s Chemistry of Functional Groups . Rappoport Z. John Wiley & Sons; Chichester: 1997
    • 6b Delcamp JH, Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 8460
    • 6c De Paolis M, Chataigner I, Maddaluno J. Top. Curr. Chem. 2012; 327: 87
    • 6d Hu X.-H, Zhang J, Yang X.-F, Xu YH, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 3169
    • 7a Lee SJ, Gray KC, Paek JS, Burke MD. J. Am. Chem. Soc. 2008; 130: 466
    • 7b Lee SJ, Anderson TM, Burke MD. Angew. Chem. Int. Ed. 2010; 49: 8860
    • 7c Woerly EM, Roy J, Burke MD. Nat. Chem. 2014; 6: 484
    • 7d Li J, Ballmer SG, Gillis EP, Fuji S, Schmidt MJ, Palazzolo AM. E, Lehmann JW, Morehouse GF, Burke MD. Science 2015; 347: 1221
    • 7e Li J, Grillo AS, Burke MD. Acc. Chem. Res. 2015; 48: 2297
    • 8a Maishal TK, Sinha-Mahapatra DK, Paranjape K, Sarkar A. Tetrahedron Lett. 2002; 43: 2263
    • 8b Diver ST, Giessert AJ. Chem. Rev. 2004; 104, 1317
    • 8c Luo SX, Cannon JS, Taylor BH. L, Engle KM, Houk KN, Grubbs RH. J. Am. Chem. Soc. 2016; 138: 14039
  • 9 Liu Y, Wang L, Deng L. J. Am. Chem. Soc. 2016; 138: 112
  • 10 Woolven H, Gonzalez-Rodriguez C, Marco I, Thompson AL, Willis MC. Org. Lett. 2011; 13: 4876
  • 11 Martial L, Bischoff L. Synlett 2015; 26: 1225
  • 12 Dang HT, Nguyen VT, Nguyen VD, Arman HD, Larionov OV. Org. Biomol. Chem. 2018; 16: 3605
  • 13 Nguyen VT, Dang HT, Pham HH, Nguyen VD, Flores-Hansen C, Arman HD, Larionov OV. J. Am. Chem. Soc. 2018; 140: 8434
  • 14 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 15 Dang HT, Nguyen VD, Hoang HP, Arman HD, Larionov OV. Tetrahedron 2019; 75: 3258
  • 16 Dang HT, Nguyen VD, Haug GC, Vuong NT. H, Arman HD, Larionov OV. ACS Catal. 2021; 11: 1042
  • 17 Wu X.-X, Ye H, Dai H, Yang B, Wang Y, Chen S, Hu L. Org. Chem. Front. 2020; 7: 2731
  • 18 Deagostino A, Prandi C, Tobasso S, Venturello P. Molecules 2010; 15: 2667

    • See also:
    • 19a Kiyota S, In S, Saito R, Komine N, Hirano M. Organometallics 2016; 35: 4033
    • 19b Xiao B.-X, Jiang B, Yan R.-J, Zhu J.-X, Xie K, Gao X.-Y, Ouyang Q, Du W, Chen Y.-C. J. Am. Chem. Soc. 2021; 143: 4809
  • 20 Zhang H, Wu X, Wei Y, Zhu C. Org. Lett. 2019; 21: 7568
  • 21 Xue Z.-J, Li M.-Y, Zhu B.-B, He Z.-T, Feng C.-G, Lin G.-Q. Chem. Commun. 2020; 56: 14420
    • 22a Hu T.-J, Li M.-Y, Zhao Q, Feng C.-G, Lin G.-Q. Angew. Chem. Int. Ed. 2018; 57: 5871
    • 22b Hu T.-J, Zhang G, Chen Y.-H, Feng C.-G, Lin G.-Q. J. Am. Chem. Soc. 2016; 138: 2897
    • 23a Pohlmann T, de Meijere A. Org. Lett. 2000; 2: 3877
    • 23b Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
    • 23c Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
    • 23d Korotkov VS, Larionov OV, Hofmeister A, Magull J, de Meijere A. J. Org. Chem. 2007; 72: 7504
    • 23e Ogawa S, Urabe D, Yokokura Y, Arai H, Arita M, Inoue M. Org. Lett. 2009; 11, 3602
    • 23f Simlandy AK, Lyu M.-Y, Brown MK. ACS Catal. 2021; 11: 12815
  • 24 McAlpine NJ, Wang L, Carrow BP. J. Am. Chem. Soc. 2018; 140: 13634
    • 25a Mitsudo T, Fischetti W, Heck RF. J. Org. Chem. 1984; 49: 1640
    • 25b Jeffery T. Tetrahedron Lett. 1992; 33: 1989
  • 26 Zhu YQ, Niu YX, Hui LW, He JL, Zhu K. Adv. Synth. Catal. 2019; 361: 2897
  • 27 Singh A, Dey D, Volla CM. R. J. Org. Chem. 2021; 86: 10474
  • 28 Jiang C, Wu J, Han J, Chen K, Qian Y, Zhang Z, Jiang Y. Chem. Commun. 2021; 57: 5710
  • 29 Maji T, Tunge JA. Org. Lett. 2015; 17: 4766
  • 30 Song Z, Wang W, Liu Z, Lu Y, Wang D. J. Org. Chem. 2021; 86: 8590
  • 31 Yang C, Dai D, Lu H, Zhang F, Fu Y, Xu Y. Org. Chem. Front. 2021; 8: 2480