Synthesis 2023; 55(01): 75-89
DOI: 10.1055/a-1953-1509
feature

Biocatalytic Synthesis of α,β-Unsaturated 2-Keto Acids and Derivatives Using the Promiscuous Aldolase, NahE

Douglas J. Fansher
,
Niza Ngwira
,
Ahmad Reza Salehi
,
Jerome Woods
,
Amanda Cascão
,
This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to D.R.J.P. and a University of Saskatchewan Dean’s Scholarship to D.J.F.


Abstract

Type I aldolases catalyze carbon–carbon bond-forming reactions to form a diverse set of products in nature but often display high selectivity for their natural substrates. One such aldolase, NahE, is known to catalyze the condensation of pyruvate with a wide range of aldehydes to give trans-4-phenyl-2-oxo-3-butenoic acids under mild aqueous conditions. These α,β-unsaturated 2-oxo acids are versatile intermediates for synthetic transformations. NahE has also been used for the synthesis of α-fluoro-β-hydroxy esters, β-hydroxy esters, and quinaldic acids. However, a thorough study of the substrate scope on a practical scale has not been performed for the native NahE-catalyzed aldol condensation reaction. Here we report that NahE can accept >35 (hetero)aromatic and aliphatic aldehydes. Most condensation products derived from substituted benzaldehydes were isolated in >95% yield without need for further purification, while non-benzaldehyde substrates gave the corresponding products in isolated yields between 26% and 98%. Reactions could be performed on gram scale. These products could be converted into α,β-unsaturated carboxylic acids in up to 93% yield over two steps. This reaction sequence was also performed using whole cells in up to 79% yield. This work demonstrates that NahE is a robust, efficient, and versatile catalyst for organic synthesis.

Supporting Information



Publication History

Received: 30 August 2022

Accepted after revision: 29 September 2022

Accepted Manuscript online:
29 September 2022

Article published online:
07 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Skovpen YV, Palmer DR. J. Biochemistry 2013; 52: 5454
  • 2 Wierenga RK. FEBS Lett. 2001; 492: 193
  • 3 Nagano N, Orengo CA, Thornton JM. J. Mol. Biol. 2002; 321: 741
  • 4 Gamblin SJ, Davies GJ, Grimes JM, Jackson RM, Littlechild JA, Watson HC. J. Mol. Biol. 1991; 219: 573
  • 5 Galkin A, Li Z, Li L, Kulakova L, Pal LR, Dunaway-Mariano D, Herzberg O. Biochemistry 2009; 48: 3186
  • 6 Eaton RW, Chapman PJ. J. Bacteriol. 1992; 174: 7542
  • 7 Eaton RW. J. Bacteriol. 1994; 176: 7757
  • 8 Eaton RW. Appl. Environ. Microbiol. 2000; 66: 2668
  • 9 Kuhm AE, Knackmuss HJ, Stolz A. J. Biol. Chem. 1993; 268: 9484
  • 10 Ferrara S, Mapelli E, Sello G, Di Gennaro P. Biochim. Biophys. Acta, Proteins Proteomics 2011; 1814: 622
  • 11 Sello G, Di Gennaro P. Appl. Biochem. Biotechnol. 2013; 170: 1702
  • 12 Howard JK, Müller M, Berry A, Nelson A. Angew. Chem. Int. Ed. 2016; 55: 6767
  • 13 Fansher DJ, Granger R, Kaur S, Palmer DR. J. ACS Catal. 2021; 11: 6939
  • 14 Moreno CJ, Hern K, Charnok SJ, Gittings S, Bolte M, Bujons J, Parella T, Clapes P. ACS Catal. 2021; 11: 4660
  • 15 Watanabe S, Watanabe Y, Nobuchi R, Ono A. J. Biol. Chem. 2020; 295: 1338
  • 16 Lawrence MC, Barbosa JA. R. G, Smith BJ, Hall NE, Pilling PA, Ooi HC, Marcuccio SM. J. Mol. Biol. 1997; 266: 381
  • 17 Conly CJ. T, Skovpen YV, Li S, Palmer DR. J, Sanders DA. R. Biochemistry 2014; 53: 7396
  • 18 Levieux JA, Medellin B, Johnson WH, Erwin K, Li W, Johnson IA, Zhang YJ, Whitman CP. Biochemistry 2018; 57: 3524
  • 19 Hua YZ, Liu MM, Huang PJ, Song X, Wang MC, Chang JB. Chem. Eur. J. 2015; 21: 11994
  • 20 Belmessieri D, Morrill LC, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
  • 21 Zhu D.-X, Xia H, Liu J.-G, Chung LW, Xu M.-H. J. Am. Chem. Soc. 2021; 143: 2608
  • 22 Nagaraju K, Gurubrahamam R, Chen K. J. Org. Chem. 2020; 85: 7060
  • 23 Hong Y, Cui T, Ivlev S, Xie X, Meggers E. Chem. Eur. J. 2021; 27: 8557
  • 24 Cohen DT, Cardinal-David B, Scheidt KA. Angew. Chem. Int. Ed. 2011; 50: 1678
  • 25 Song R, Yu H, Huang H, Chen Y. ChemistrySelect 2019; 4: 14021
  • 26 Paizs C, Katona A, Rétey J. Chem. Eur. J. 2006; 12: 2739
  • 27 Szymanski W, Wu B, Weiner B, de Wildeman S, Feringa BL, Janssen DB. J. Org. Chem. 2009; 74: 9152
  • 28 Klettke KL, Sanyal S, Mutatu W, Walker KD. J. Am. Chem. Soc. 2007; 129: 6988
  • 29 Elmes RB. P, Ryan GJ, Erby ML, Frimannsson DO, Kitchen JA, Lawler M, Williams DC, Quinn SJ, Gunnlaugsson T. Inorg. Chem. 2020; 59: 10874
  • 30 Shcherbakova I, Wermuth CG, Jeannot F, Ciapetti P, Roques V, Heaton WL, Breinholt JA, Conklin RL. WO2007044796A2, 2007
  • 31 Gore S, Chinthapally K, Baskaran S, König B. Chem. Commun. 2013; 49: 5052
  • 32 Zhu L, Meng Q, Fan W, Xie X, Zhang Z. J. Org. Chem. 2010; 75: 6027
  • 33 Srivastava BK, Joharapurkar A, Raval S, Patel JZ, Soni R, Raval P, Gite A, Goswami A, Sadhwani N, Gandhi N, Patel H, Mishra B, Solanki M, Pandey B, Jain MR, Patel PR. J. Med. Chem. 2007; 50: 5951
  • 34 Annan N, Paris R, Jordan F. J. Am. Chem. Soc. 1989; 111: 8895
  • 35 Basu D, Richters A, Rauh D. Bioorg. Med. Chem. 2015; 23: 2767
  • 36 Kowczyk-Sadowy M, Swislocka R, Lewandowska H, Piekut J, Lewandowski W. Molecules 2015; 20: 3146
  • 37 Peng Y, Song G. Green Chem. 2003; 5: 704
  • 38 Modak A, Mondal J, Sasidharan M, Bhaumik A. Green Chem. 2011; 13: 1317
  • 39 Yoshida M, Katagiri Y, Zhu W.-B, Shishido K. Org. Biomol. Chem. 2009; 7: 4062
  • 40 Suresh, Kumar D, Sandhu JS. Synth. Commun. 2010; 40: 1915
  • 41 Fukuyama T, Arai M, Matsubara H, Ryu I. J. Org. Chem. 2004; 69: 8105
  • 42 Pardin C, Pelletier JN, Lubell WD, Keillor JW. J. Org. Chem. 2008; 73: 5766
  • 43 Kokotos G, Hsu YH, Burke JE, Baskakis C, Kokotos CG, Magrioti V, Dennis EA. J. Med. Chem. 2010; 53: 3602