Synthesis 2023; 55(21): 3617-3624
DOI: 10.1055/a-2002-5931
special topic
C–H Bond Functionalization of Heterocycles

Rh(III)-Catalyzed Stereoselective C–H Homoallylation of Indolines with 4-Vinyl-1,3-dioxan-2-ones

Zhou Zhang
a   Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. of China
,
Jun-Jie Yi
a   Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. of China
,
Muhammad Aslam
a   Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. of China
,
Jie-Ping Wan
b   College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Meng Sun
a   Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (No. 21702160), Key Laboratory Research Foundation of Education Committee of Shaanxi Province (20JS145), Innovation Capability Support Program of Shaanxi (No. 2020TD-022), and the ‘Top-rated Discipline’ Construction Scheme of Shaanxi Higher Education for financial support.


Abstract

An efficient and robust Rh(III)-catalyzed C–H homoallylation of indolines has been developed. Using 4-vinyl-1,3-dioxan-2-one as coupling partner, a range of homoallylic alcohols were prepared in excellent stereoselectivities. The current strategy features high efficiency, good yields, and exceptional functional group tolerance.

Supporting Information



Publication History

Received: 18 November 2022

Accepted after revision: 21 December 2022

Accepted Manuscript online:
21 December 2022

Article published online:
16 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2013; 30: 694
    • 1b Chang L, Podoll JD, Wang W, Walls S, O’Rourke CP, Wang X. J. Med. Chem. 2014; 57: 3803
    • 1c Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2015; 32: 1389
    • 1d Manikandan A, Moharil P, Sathishkumar M, Muñoz-Garay C, Sivakumar A. Eur. J. Med. Chem. 2017; 141: 417

      For selected examples, see:
    • 2a Owa T, Yokoi A, Yamazaki K, Yoshimatsu K, Yamori T, Nagasu T. J. Med. Chem. 2002; 45: 4913
    • 2b Mohan R, Banerjee M, Ray A, Manna T, Wilson L, Owa T, Bhattacharyya B, Panda D. Biochemistry 2006; 45: 5440
    • 2c Ferandin Y, Bettayeb K, Kritsanida M, Lozach O, Polychronopoulos P, Magiatis P, Skaltsounis A.-L, Meijer L. J. Med. Chem. 2006; 49: 4638
    • 2d Burke JP, Bian Z, Shaw S, Zhao B, Goodwin CM, Belmar J, Browning CF, Vigil D, Friberg A, Camper DV, Rossanese OW, Lee T, Olejniczak ET, Fesik SW. J. Med. Chem. 2015; 58: 3794
    • 2e Takahashi K, Kasai M, Ohta M, Shoji Y, Kunishiro K, Kanda M, Kurahashi K, Shirahase H. J. Med. Chem. 2008; 51: 4823
    • 3a Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 3b Jiao J, Murakami K, Itami K. ACS Catal. 2016; 6: 610
    • 3c Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 3d He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 3e White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
    • 3f Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 3g Chen Z, Rong M.-Y, Nie J, Zhu X.-F, Shi B.-F, Ma J.-A. Chem. Soc. Rev. 2019; 48: 4921
    • 4a Neufeldt SR, Seigerman CK, Sanford MS. Org. Lett. 2013; 15: 2302
    • 4b Lee SH, Jeong T, Kim K, Kwon NY, Pandey AK, Kim HS, Ku J.-M, Mishra NK, Kim IS. J. Org. Chem. 2019; 84: 2307
    • 4c Jagtap RA, Samal PP, Vinod CP, Krishnamurty S, Punji B. ACS Catal. 2020; 10: 7312
    • 4d Zhou X, Yu S, Qi Z, Kong L, Li X. J. Org. Chem. 2016; 81: 4869
    • 4e Premi C, Dixit A, Jain N. Org. Lett. 2015; 17: 2598
    • 4f Hu W, Wang X, Yu X, Zhu X, Hao X.-Q, Song M.-P. Asian J. Org. Chem. 2021; 10: 2557
    • 4g Jo H, Park J, Choi M, Sharma S, Jeon M, Mishra NK, Jeong T, Han S, Kim IS. Adv. Synth. Catal. 2016; 358: 2714
    • 4h Ai W, Yang X, Wu Y, Wang X, Li Y, Yang Y, Zhou B. Chem. Eur. J. 2014; 20: 17653
    • 5a Urones B, Arrayás RG, Carretero JC. Org. Lett. 2013; 15: 1120
    • 5b Jiao L.-Y, Oestreich M. Org. Lett. 2013; 15: 5374
    • 5c Song Z, Samanta R, Antonchick AP. Org. Lett. 2013; 15: 5662
    • 5d Pan S, Wakaki T, Ryu N, Shibata T. Chem. Asian J. 2014; 9: 1257
    • 6a Wu Y, Yang Y, Zhou B, Li Y. J. Org. Chem. 2015; 80: 1946
    • 6b Yang X.-F, Hu X.-H, Feng C, Loh T.-P. Chem. Commun. 2015; 51: 2532
    • 7a Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
    • 7b Nishikata T, Abela AR, Huang S, Lipshutz BH. J. Am. Chem. Soc. 2010; 132: 4978
    • 7c De PB, Pradhan S, Banerjee S, Punniyamurthy T. Chem. Commun. 2018; 54: 2494
    • 8a Kim M, Mishra NK, Park J, Han S, Shin Y, Sharma S, Lee Y, Lee E.-K, Kwak JH, Kim IS. Chem. Commun. 2014; 50: 14249
    • 8b Suzuki H, Sasamori F, Matsuda T. Org. Lett. 2022; 24: 1141
    • 8c Xie G, Zhao Y, Cai C, Deng G.-J, Gong H. Org. Lett. 2021; 23: 410
    • 9a Yan Q, Huang H, Zhang H, Li M.-H, Yang D, Song M.-P, Niu J.-L. J. Org. Chem. 2020; 85: 11190
    • 9b Kumar M, Raziullah Khan AA, Ahmad A, Dutta HS, Kant R, Koley D. J. Org. Chem. 2019; 84: 13624
    • 9c Jeon M, Mishra NK, De U, Sharma S, Oh Y, Choi M, Jo H, Sachan R, Kim HS, Kim IS. J. Org. Chem. 2016; 81: 9878
    • 9d Mishra NK, Jeon M, Oh Y, Jo H, Park J, Han S, Sharma S, Han SH, Jung YH, Kim IS. Org. Chem. Front. 2017; 4: 241
    • 9e Li H, Jie J, Wu S, Yang X, Xu H. Org. Chem. Front. 2017; 4: 250
    • 10a Ahmad A, Dutta HS, Kumar M, Khan AA, Raziullah Koley D. Org. Lett. 2020; 22: 5870
    • 10b Manisha Gupta SS, Dhiman AK, Sharma U. Eur. J. Org. Chem. 2021; 5443
    • 11a Mishra A, Vats TK, Nair MP, Das A, Deb I. J. Org. Chem. 2017; 82: 12406
    • 11b Ahmad A, Dutta HS, Khan B, Kant R, Koley D. Adv. Synth. Catal. 2018; 360: 1644
    • 11c De PB, Banerjee S, Pradhan S, Punniyamurthy T. Org. Biomol. Chem. 2018; 16: 5889

      For selected reviews, see:
    • 12a Denmark SE, Almstead NG. In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000: Chap. 10, 299
    • 12b Chemler SR, Roush WR. In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000: 403
    • 12c Elford TG, Hall DG. In Boronic Acids . Hall DG. Wiley-VCH; Weinheim: 2011: 393

      For selected papers, see:
    • 14a Olsson VJ, Szabó KJ. Angew. Chem. Int. Ed. 2007; 46: 6891
    • 14b Deng H.-P, Eriksson L, Szabó KJ. Chem. Commun. 2014; 50: 9207
    • 14c Tao Z.-L, Li X.-H, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 4054
    • 14d Mita T, Hanagata S, Michigami K, Sato Y. Org. Lett. 2017; 19: 5876
    • 14e Li L.-L, Tao Z.-L, Han Z.-Y, Gong L.-Z. Org. Lett. 2017; 19: 102
    • 14f Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem. Sci. 2019; 10: 3459
    • 14g Li C, Liu RY, Jesikiewicz LT, Yang Y, Liu P, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 5062
    • 14h Zanghi JM, Meek SJ. Angew. Chem. Int. Ed. 2020; 59: 8451

      For selected papers, see:
    • 15a Boerth JA, Maity S, Williams SK, Mercado BQ, Ellman JA. Nat. Catal. 2018; 1: 673
    • 15b Sun D, Shen Z, Ellman JA. Angew. Chem. Int. Ed. 2019; 58: 12590
    • 15c Li R, Ju C.-W, Zhao D. Chem. Commun. 2019; 55: 695
  • 16 Hu H, Xu W.-H, Kang W.-X, Sun W, Sun R, Wei X.-H, Sun M. Org. Chem. Front. 2021; 8: 4459