Synthesis 2024; 56(01): 134-142
DOI: 10.1055/a-2022-1905
special topic
Advances in Skeletal Editing and Rearrangement Reactions

Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides Bearing a Tethered Nucleophile with the Translocation of an Amide Group

Ryoma Shimazumi
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
,
Takuya Kodama
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
,
Mamoru Tobisu
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI; grant number JP21H04682) from MEXT, Japan­. R.S. thanks the Japan Science and Technology Agency (JST SPRING; grant number JPMJSP2138) for support.


Abstract

The palladium-catalyzed reaction of N-allylamides bearing a tethered nucleophile results in the extrusion of an amide moiety in the form of an isocyanate, with its subsequent capture by the pendant nucleophile­. This reaction involves the net catalytic transposition of an amide group.

Supporting Information



Publication History

Received: 19 November 2022

Accepted after revision: 30 January 2023

Accepted Manuscript online:
30 January 2023

Article published online:
06 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 1b Börgel J, Ritter T. Chem 2020; 6: 1877
    • 1c Lasso JD, Castillo-Pazos DJ, Li C.-J. Chem. Soc. Rev. 2021; 50: 10955
    • 1d Jurczyk J, Woo J, Kim SF, Dherange BD, Sarpong R, Levin MD. Nat. Synth. 2022; 1: 352
    • 2a Murakami M, Ishida N. J. Am. Chem. Soc. 2016; 138: 13759
    • 2b Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 2c Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
    • 2d Tobisu M, Kodama T, Fujimoto H. In Comprehensive Organometallic Chemistry IV, Vol. 12. Tonks IA. Elsevier; Amsterdam: 2022: 347-420

      For selected reviews on insertion reactions into carbon frameworks, see:
    • 3a Xue Y, Dong G. Acc. Chem. Res. 2022; 55: 2341
    • 3b Murakami M, Ishida N. Chem. Rev. 2021; 121: 264

      For selected recent work involving insertion of more than one atom into C–C bonds, see:
    • 4a Denton EH, Lee YH, Roediger S, Boehm P, Fellert M, Morandi B. Angew. Chem. Int. Ed. 2021; 60: 23435
    • 4b Liao L.-L, Cao G.-M, Jiang Y.-X, Jin X.-H, Hu X.-L, Chruma JJ, Sun G.-Q, Gui Y.-Y, Yu D.-G. J. Am. Chem. Soc. 2021; 143: 2812
    • 4c Ito Y, Nakatani S, Shiraki R, Kodama T, Tobisu M. J. Am. Chem. Soc. 2022; 144: 662

      For selected recent work involving single atom insertion, see:
    • 5a Hyland EE, Kelly PQ, McKillop AM, Dherange BD, Levin MD. J. Am. Chem. Soc. 2022; 144: 19258
    • 5b Liu S, Cheng X. Nat. Commun. 2022; 13: 425
    • 5c Reisenbauer JC, Green O, Franchino A, Finkelstein P, Morandi B. Science 2022; 377: 1104
    • 5d Kelly PQ, Filatov AS, Levin MD. Angew. Chem. Int. Ed. 2022; 61: e202213041
    • 5e Saito H, Yorimitsu H. Chem. Lett. 2019; 48: 1019 ; see also ref. 1d

      For decarbonylation, see:
    • 6a Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365

    • For decarboxylation, see:
    • 6b Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
    • 6c Tunge JA. Isr. J. Chem. 2020; 60: 351

    • For desulfonylation, see:
    • 6d Nambo M, Maekawa Y, Crudden CM. ACS Catal. 2022; 12: 3013

    • For deisocyanation, see:
    • 6e Shimazumi R, Tanimoto R, Kodama T, Tobisu M. J. Am. Chem. Soc. 2022; 144: 11033

      For selected recent work on single-atom deletion, see:
    • 7a Woo J, Christian AH, Burgess SA, Jiang Y, Mansoor UF, Levin MD. Science 2022; 376: 527
    • 7b Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
    • 7c Nwachukwu CI, McFadden TP, Roberts AG. J. Org. Chem. 2020; 85: 9979 ; see also ref. 1d

      For reviews on substitution-type editing of molecular frameworks, see:
    • 8a Kurahashi T, Matsubara S. Acc. Chem. Res. 2015; 48: 170
    • 8b Vasu D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162

    • For selected recent work, see:
    • 8c Luu QH, Li J. Chem. Sci. 2022; 13: 1095
    • 8d Patel SC, Burns NZ. J. Am. Chem. Soc. 2022; 144: 17797
    • 8e Gary S, Bloom S. ACS Cent. Sci. 2022; 8: 1537
    • 8f Bartholomew GL, Carpaneto F, Sarpong R. J. Am. Chem. Soc. 2022; 144: 22309 ; see also refs. 4a–c for substitution via decarbonylation and decarboxylation. Other related examples can also be found in ref. 1d
  • 9 The allylic substitution of allyl carbamates bearing a tethered nucleophile was reported to give products with CO2 incorporation. However, such reactions are not classified as cut-and-paste type editing, because part of the group in the substrate (i.e., a MeO group) is eliminated as a result of the transformation. See: Feng H. Chem. Heterocycl. Compd. (Engl. Transl.) 2020; 56: 506
  • 10 The low reactivity of electron-rich isocyanates against nucleophiles is another potential reason. See: Rawling T, McDonagh AM, Tattam B, Murray M. Tetrahedron 2012; 68: 6065
  • 11 Sangeeth CS. S, Demissie AT, Yuan L, Wang T, Frisbie CD, Nijhuis CA. J. Am. Chem. Soc. 2016; 138: 7305