Synthesis 2023; 55(10): 1507-1516
DOI: 10.1055/a-2029-0015
feature

Hetero-Diels–Alder Addition of Ethyl 2-Nitrosoacrylate to (Z)-Prop-1-enyl Ethers. Stereoselective Synthesis of a Precursor to Sacubitril

Stavroula A. Zisopoulou
a   Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
,
b   Pharmathen Industrial S.A., 9th km Thermi-Thessaloniki, Thessaloniki 57001, Greece
,
Theocharis V. Koftis
b   Pharmathen Industrial S.A., 9th km Thermi-Thessaloniki, Thessaloniki 57001, Greece
,
John K. Gallos
a   Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
,
Christos I. Stathakis
a   Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
› Author Affiliations
This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01161).


Abstract

A novel, conceptually distinct synthesis of a key precursor to sacubitril, an antihypertensive drug, is presented. The well-demonstrated hetero-Diels–Alder addition of in situ generated nitrosoalkenes to electron-rich enol ethers was engaged to establish the required functionalities with controllable relative stereochemistry. An asymmetric variant of the enol ether enabled access to the target molecule in enantiopure form.

Supporting Information



Publication History

Received: 09 January 2023

Accepted after revision: 06 February 2023

Accepted Manuscript online:
06 February 2023

Article published online:
15 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a McCormack PL. Drugs 2016; 76: 387
    • 1b Andersen MB, Simonsen U, Wehland M, Pietsch J, Grimm DL. Basic Clin. Pharmacol. Toxicol. 2016; 118: 14
  • 2 Vilela-Martin JF. Drug Des., Dev. Ther. 2016; 10: 1627
    • 3a McMurray JJ. Eur. J. Heart Failure 2015; 17: 242
    • 3b Schiering N, D’Arcy A, Villard F, Ramage P, Logel C, Cumin F, Ksander GM, Wiesmann C, Karki RG, Mogi M. Sci. Rep. 2016; 6: 27909
  • 4 Ksander GM, Ghai RD, deJesus R, Diefenbacher CG, Yuan A, Berry C, Sakane Y, Trapani A. J. Med. Chem. 1995; 38: 1689
    • 5a Flick AC, Ding HX, Leverett CA, Kyne RE. Jr, Liu KK.-C, Fink SJ, O’Donnell CJ. J. Med. Chem. 2017; 60: 6480
    • 5b Wang Y, Chen F.-E, Shi Y, Tian W.-S. Tetrahedron Lett. 2016; 57: 5928
    • 5c Halama A, Zapadlo M. Org. Process Res. Dev. 2019; 23: 102
    • 5d Teyssier VR, Simard J.-M, Dornan MH, Tournoux F, DaSilva JN. J. Labelled Compd. Radiopharm. 2020; 63: 65

      Selected patents:
    • 6a Hook D, Ruch T, Riss B, Wietfeld B, Sedelmeier G, Napp M, Banziger M, Hawker S, Ciszewski L, Waykole LM. WO2008083967A2, 2008
    • 6b Hook D, Zhou J, Li Y, Ku J. WO2011088797A1, 2011
    • 6c Hook D, Zhou J, Li Y. WO2012025501A1, 2012
    • 6d Hook D, Riss B, Zhou J, Li Y, Bappert E. WO2012025502A1, 2012
    • 6e Zhu G, Ye W, Zheng H, Qian L, Wei J, Yang L, Li Y, Luo L. WO2014032627A1, 2014
    • 6f Hook D, Wietfeld B, Lotz M. WO2008031567A1, 2008
    • 6g Ksander G. US5217996A, 1993
    • 6h Halama A, Zvatora P, Dammer O, Stach J, Zapadlo M, Krejcik L, Voslar M. WO2016074651A1, 2016
    • 6i Feng L, Godtfredsen SE, Karpinski P, Sutton PA, Prashad M, Girgis MJ, Hu B, Liu Y, Blacklock TJ. WO2007056546A1, 2007
    • 6j Martin B, Kleinbeck-Rinik FK, Penn G, Venturoni F, Sedelmeier J, Sedelmeier G, Mafli I. WO2018033866A1, 2018
    • 6k Hook D, Riss B, Kaufmann D, Napp M, Bappert E, Polleux P, Medlock J, Zanotti-Gerosa A. WO2009090251A2, 2009
    • 6l Halama A, Zvatora P, Voslar M, Stach J, Zapaldo M, Dammer O, Krejcik L, Dvorakova L, Rezankova M, Vyslouzil R. WO2017097275A1, 2017
    • 6m Zhang B. CN105566194, 2016
    • 6n Yu W, Jiang H. CN106496055, 2017
    • 6o Huang W, Shan X, Chen X, Hu E, Zhang J. CN106810485, 2017
    • 6p Li T, Wang B. CN109384701, 2019
    • 7a Lau S.-H, Bourne SL, Martin B, Schenkel B, Penn G, Ley SV. Org. Lett. 2015; 17: 5436
    • 7b Hiebler K, Dertnig C, Soritz S, Maier MC, Hörmann TR, Grabner B, Gruber-Woelfler H. J. Flow Chem. 2020; 10: 259
    • 7c Hiebler K, Lichtenegger GJ, Maier MC, Park ES, Gonzales-Groom R, Binks BP, Gruber-Woelfler H. Beilstein J. Org. Chem. 2018; 14: 648
    • 8a Reissig H.-U, Zimmer R. In Science of Synthesis, Vol. 33. Molander GA. Thieme; Stuttgart: 2007: 371
    • 8b Gilchrist TL. Chem. Soc. Rev. 1983; 12: 53
  • 9 Lopes SM. M, Cardoso AL, Lemos A, Pinho e Melo TM. V. D. Chem. Rev. 2018; 118: 11324 ; and references cited therein
    • 10a Gallos JK, Sarli VC, Varvogli AC, Papadoyanni CZ, Papaspyrou SD, Argyropoulos NG. Tetrahedron Lett. 2003; 44: 3905
    • 10b Gallos JK, Sarli VC, Massen ZS, Varvogli AC, Papadoyanni CZ, Papaspyrou SD, Argyropoulos NG. Tetrahedron 2005; 61: 565
    • 10c Massen ZS, Sarli VC, Coutouli-Argyropoulou E, Gallos JK. Carbohydr. Res. 2011; 346: 230
    • 10d Massen ZS, Gallos JK. J. Heterocycl. Chem. 2012; 49: 1214
    • 11a Gallos JK, Sarli VC, Koftis TV, Coutouli-Argyropoulou E. Tetrahedron Lett. 2000; 41: 4819
    • 11b Gallos JK, Sarli VC, Stathakis CI, Koftis TV, Nachmia VR, Coutouli-Argyropoulou E. Tetrahedron 2002; 58: 9351
    • 11c Massen ZS, Coutouli-Argyropoulou E, Sarli VC, Gallos JK. Carbohydr. Res. 2011; 346: 508
    • 11d Serafidou A.-T, Yioti EG, Gallos JK. Eur. J. Org. Chem. 2013; 939
  • 12 Yioti EG, Mati IK, Arvanitidis AG, Massen ZS, Alexandraki ES, Gallos JK. Synthesis 2011; 142
  • 13 Ahmad SA. Z, Jena TK. Chem. Asian J. 2021; 16: 1685
  • 14 Prosser TJ. J. Am. Chem. Soc. 1961; 83: 1701
  • 16 Armstrong RW, DeMattei JA. Tetrahedron Lett. 1991; 32: 5749
  • 17 Arnold T, Orschel B, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1992; 31: 1033
  • 18 Arnold T, Reissig H.-U. Synlett 1990; 514
  • 19 Murphy AC, Mitova MI, Blunt JW, Munro MH. G. J. Nat. Prod. 2008; 71: 806
  • 20 Motoyama Y, Abe M, Kamo K, Kosakoa Y, Nagashima H. Chem. Commun. 2008; 5321
  • 21 Huang G, Ke M, Tao Y, Chen F. J. Org. Chem. 2020; 85: 5321
  • 22 Compounds 38a,b and 4345 appear as mixtures of conformers, presumably due to restricted rotation of one of the etheric bonds connecting the chiral auxiliary with the oxazine heterocycle; therefore, their NMR spectra look complex. This was verified by recording 1H NMR spectra at higher temperature, where some of the peaks collapsed to one. In addition, by removing the auxiliary at the reductive ring contraction stage, only a sole product was obtained.