CC BY 4.0 · Synthesis 2023; 55(16): 2427-2438
DOI: 10.1055/a-2039-5424
short review
Science of Synthesis Early Career Advisory Board

Synthetic Strategies to Control C–N Atropisomerism in Acyclic Amines and Amides

Aaron D. G. Campbell
,
The authors gratefully acknowledge Newcastle University and the Royal Society (RGS\R1\221162) for funding.


Abstract

Atropisomeric molecules are a privileged class of stereogenic material that have important applications in catalysis, materials science and medicines. To date, the majority of work has been focused upon biaryl and heterobiaryl scaffolds involving restricted rotation between a pair of cyclic fragments, but C–N atropisomeric molecules based upon amines and amides, where the nitrogen atom is not part of a ring system, are rapidly emerging as an important class of stereogenic molecules. This is the focus of this Short Review, which begins by discussing the factors which influence the configurational stability of such molecules and provides a historical background to their synthesis. This is followed by a detailed discussion of state-of-the-art catalytic asymmetric strategies that are now available to access C–Nacyclic atropisomers including carboxamides, sulfonamides, sulfinamides, phosphamides and diarylamines. A variety of different synthetic approaches are discussed, including kinetic resolution/desymmetrization, amination, C–H functionalization, N-functionalization, and annulation.

1 Introduction

2 Atropisomerism in Acyclic Amines and Amides

3 Synthesis Directed by a Chiral Auxiliary

4 Atropselective Synthesis

4.1 Kinetic Resolution and Desymmetrization

4.2 Electrophilic Amination

4.3 C–H Functionalization

4.4 N-Functionalization

4.5 Annulation

5 Conclusions and Outlook



Publication History

Received: 27 January 2023

Accepted after revision: 20 February 2023

Accepted Manuscript online:
21 February 2023

Article published online:
06 June 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Oki M. Recent Advances in Atropisomerism . In Topics in Stereochemistry, Vol. 14. Allinger NL, Eliel EL, Wilen SH. John Wiley & Sons; New York: 1983

    • For selected recent review articles, see:
    • 2a Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem. Rev. 2015; 115: 11239
    • 2b Zilate B, Castrogiovanni A, Sparr C. ACS Catal. 2018; 8: 2981
    • 2c Corti V, Bertuzzi G. Synthesis 2020; 52: 2450
    • 2d Li T.-Z, Liu S.-J, Tan W, Shi F. Chem. Eur. J. 2020; 26: 15779
    • 2e Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
    • 2f Song R, Xie Y, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 60: 26026
    • 2g Hedouin G, Hazra S, Gallou F, Handa S. ACS Catal. 2022; 12: 4918
    • 2h Zhang X, Zhao K, Gu Z. Acc. Chem. Res. 2022; 55: 1620
    • 2i Watts OF. B, Berreur J, Collins BS. L, Clayden J. Acc. Chem. Res. 2022; 55: 3362

      For recent reviews on C–N atropisomerism, see:
    • 3a Takahashi I, Suzuki Y, Kitagawa O. Org. Prep. Proced. Int. 2014; 46: 1
    • 3b Frey J, Choppin S, Colobert F, Wencel-Delord J. Chimia 2020; 74: 883
    • 3c Kitagawa O. Acc. Chem. Res. 2021; 54: 719
    • 3d Wu Y.-J, Liao G, Shi B.-F. Green Synth. Catal. 2022; 3: 117
    • 3e Rodríguez-Salamanca P, Fernández R, Hornillos V, Lassaletta JM. Chem. Eur. J. 2022; 28: e202104442
    • 3f Sweet JS, Knipe PC. Synthesis 2022; 54: 2119
    • 3g Mei G.-J, Koay WL, Guan C.-Y, Lu Y. Chem 2022; 8: 1855
    • 3h Xiao X, Chen B, Yao Y.-P, Zhou H.-J, Wang X, Wang N.-Z, Chen F.-E. Molecules 2022; 27: 6583
    • 4a Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, Lanman BA, Werner J, Rapaport AS, San Miguel T, Ortiz R, Osgood T, Sun J.-R, Zhu X, McCarter JD, Volak LP, Houk BE, Fakih MG, O’Neil BH, Price TJ, Falchook GS, Desai J, Kuo J, Govindan R, Hong DS, Ouyang W, Henary H, Arvedson T, Cee VJ, Lipford JR. Nature 2019; 575: 217
    • 4b Lanman BA, Parsons AT, Zech SG. Acc. Chem. Res. 2022; 55: 2892
    • 4c Deur C, Agrawal AK, Baum H, Booth J, Bove S, Brieland J, Bunker A, Connolly C, Cornicelli J, Dumin J, Finzel B, Gan X, Guppy S, Kamilar G, Kilgore K, Lee P, Loi C.-M, Lou Z, Morris M, Philippe L, Przybranowski S, Riley F, Samas B, Sanchez B, Tecle H, Wang Z, Welch K, Wilson M, Yates K. Bioorg. Med. Chem. Lett. 2007; 17: 4599
    • 4d Chobanian H, Guo Y, Liu P, Chioda M, Lanza TJ. Jr, Chang L, Kelly TM, Kan Y, Palyha O, Guan X.-M, Marsh D, Metzger JM, Gorski JN, Raustad K, Wang S.-P, Strack AM, Miller R, Pang J, Madeira M, Lyons K, Dragovic J, Reitman ML, Nargund RP, Lin LS. ACS Med. Chem. Lett. 2012; 3: 252

    • For general reviews on medicinal applications, see:
    • 4e Toenjes ST, Gustafson JL. Fut. Med. Chem. 2018; 10: 409
    • 4f Basilaia M, Chen MH, Secka J, Gustafson JL. Acc. Chem. Res. 2022; 55: 2904
  • 5 Costil R, Sterling AJ, Duarte F, Clayden J. Angew. Chem. Int. Ed. 2020; 59: 18670
  • 6 Costil R, Dale HJ. A, Fey N, Whitcombe G, Matlock JV, Clayden J. Angew. Chem. Int. Ed. 2017; 56: 12533
    • 7a Iwasaki Y, Morisawa R, Yokojima S, Hasegawa H, Roussel C, Vanthuyne N, Caytan E, Kitagawa O. Chem. Eur. J. 2018; 24: 4453
    • 7b Furukawa G, Shirai T, Homma Y, Caytan E, Vanthuyne N, Farran D, Roussel C, Kitagawa O. J. Org. Chem. 2020; 85: 5109
    • 7c Homma D, Taketani S, Shirai T, Caytan E, Roussel C, Elguero J, Alkorta I, Kitagawa O. J. Org. Chem. 2022; 87: 8118
    • 8a Kawabata T, Jiang C, Hayashi K, Tsubaki K, Yoshimura T, Majumdar S, Sasamori T, Tokitoh N. J. Am. Chem. Soc. 2009; 131: 54
    • 8b Hayashi K, Matubayasi N, Jiang C, Yoshimura T, Majumdar S, Sasamori T, Tokitoh N, Kawabata T. J. Org. Chem. 2010; 75: 5031

      Various elegant syntheses of C–C atropisomeric amides based upon hindered ortho-substituted benzamides have also been reported. For selected examples, see:
    • 9a Barrett KT, Miller SJ. J. Am. Chem. Soc. 2013; 135: 2963
    • 9b Barrett KT, Metrano AJ, Rablen PR, Miller SJ. Nature 2014; 509: 71
    • 9c Clayden JP, Lai LW. Angew. Chem. Int. Ed. 1999; 38: 2556
    • 9d Bragg RA, Clayden J, Morris GA, Pink JH. Chem. Eur. J. 2002; 8: 1279
    • 9e Fäseke VC, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 7261
    • 9f Fugard AJ, Lahdenperä AS. K, Tan JS. J, Mekareeya A, Paton RS, Smith MD. Angew. Chem. Int. Ed. 2019; 58: 2795
    • 10a Curran DP, Hale GR, Geib SJ, Balog A, Cass QB, Degani AL. G, Hernandes MZ, Freitas LC. G. Tetrahedron: Asymmetry 1997; 8: 3955
    • 10b Curran DP, Qi H, Geib SJ, DeMello NC. J. Am. Chem. Soc. 1994; 116: 3131
  • 11 Curran DP, Liu W, Chen CH.-T. J. Am. Chem. Soc. 1999; 121: 11012
  • 12 Gao Z, Yan C.-X, Qian J, Yang H, Zhou P, Zhang J, Jiang G. ACS Catal. 2021; 11: 6931
    • 13a Kitagawa O, Izawa H, Taguchi T, Shiro M. Tetrahedron Lett. 1997; 38: 4447
    • 13b Kitagawa O, Izawa H, Sato K, Dobashi A, Taguchi T, Shiro M. J. Org. Chem. 1998; 63: 2634
  • 15 Kitagawa O, Momose S, Fushimi Y, Taguchi T. Tetrahedron Lett. 1999; 40: 8827
  • 16 Ates A, Curran DP. J. Am. Chem. Soc. 2001; 123: 5130
  • 17 Hughes AD, Price DA, Shishkin O, Simpkins NS. Tetrahedron Lett. 1996; 37: 7607
  • 18 Clayden J, Turner H. Tetrahedron Lett. 2009; 50: 3216
  • 19 Jiang H.-J, Geng R.-L, Wei J.-H, Gong L.-Z. Chin. J. Chem. 2021; 39: 3269
    • 20a Hata T, Koide H, Taniguchi N, Uemura M. Org. Lett. 2000; 2: 1907
    • 20b Koide H, Hata T, Uemura M. J. Org. Chem. 2002; 67: 1929
  • 21 Yang B, Yang J, Zhang J. Chin. J. Chem. 2022; 40: 317
    • 22a Brandes S, Bella M, Kjærsgaard A, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 1147
    • 22b Brandes S, Niess B, Bella M, Prieto A, Overgaard J, Jørgensen KA. Chem. Eur. J. 2006; 12: 6039
  • 23 Bai H.-Y, Tan F.-X, Liu T.-Q, Zhu G.-D, Tian J.-M, Ding T.-M, Chen Z.-M, Zhang S.-Y. Nat. Commun. 2019; 10: 3063
  • 24 Wang D, Jiang Q, Yang X. Chem. Commun. 2020; 56: 6201
  • 25 Guo R, Li K.-N, Liu B, Zhu H.-J, Fan Y.-M, Gong L.-Z. Chem. Commun. 2014; 50: 5451
  • 26 Qin J, Zhou T, Zhou T.-P, Tang L, Zuo H, Yu H, Wu G, Wu Y, Liao R.-Z, Zhong F. Angew. Chem. Int. Ed. 2022; 61: e202205159
  • 27 Yao Q.-J, Xie P.-P, Wu Y.-J, Feng Y.-L, Teng M.-Y, Hong X, Shi B.-F. J. Am. Chem. Soc. 2020; 142: 18266
    • 28a Wu Y.-J, Xie P.-P, Zhou G, Yao Q.-J, Hong X, Shi B.-F. Chem. Sci. 2021; 12: 9391
    • 28b Jia Z.-S, Wu Y.-J, Yao Q.-J, Xu X.-T, Zhang K, Shi B.-F. Org. Lett. 2022; 24: 304
    • 29a Li Z, Zhang H, Yu S. Org. Lett. 2019; 21: 4754
    • 29b Li Z, Tang M, Hu C, Yu S. Org. Lett. 2019; 21: 8819
    • 29c For a subsequent expansion to a two-axis system, see: Wang Y, Yan J, Jiang Y, Wei Z, Tu Z, Dong C, Lu T, Chen Y, Feng J. Molecules 2022; 27: 9008
  • 30 Vaidya SD, Toenjes ST, Yamamoto N, Maddox SM, Gustafson JL. J. Am. Chem. Soc. 2020; 142: 2198
  • 31 Zhu D, Yu L, Luo H.-Y, Xue X.-S, Chen Z.-M. Angew. Chem. Int. Ed. 2022; 61: e202211782
    • 32a Kitagawa O, Kohriyama M, Taguchi T. J. Org. Chem. 2002; 67: 8682
    • 32b Kitagawa O, Takahashi M, Kohriyama M, Taguchi T. J. Org. Chem. 2003; 68: 9851
  • 33 Terauchi J, Curran DP. Tetrahedron: Asymmetry 2003; 14: 587
  • 34 Liu Y, Feng X, Du H. Org. Biomol. Chem. 2015; 13: 125
    • 35a Kikuchi Y, Nakamura C, Matsuoka M, Asami R, Kitagawa O. J. Org. Chem. 2019; 84: 8112
    • 35b Fukasawa S, Toyoda T, Kasahara R, Nakamura C, Kikuchi Y, Hori A, Richards GJ, Kitagawa O. Molecules 2022; 27: 7819
    • 36a Kitagawa O, Takahashi M, Yoshikawa M, Taguchi T. J. Am. Chem. Soc. 2005; 127: 3676
    • 36b Kitagawa O, Yoshikawa M, Tanabe H, Morita T, Takahashi M, Dobashi Y, Taguchi T. J. Am. Chem. Soc. 2006; 128: 12923
    • 37a Fan X, Zhang X, Li C, Gu Z. ACS Catal. 2019; 9: 2286
    • 37b Liu Z.-S, Xie P.-P, Hua Y, Wu C, Ma Y, Chen J, Cheng H.-G, Hong X, Zhou Q. Chem 2021; 7: 1917
    • 37c Sweet JS, Rajkumar S, Dingwall P, Knipe PC. Eur. J. Org. Chem. 2021; 3980
  • 38 Shirakawa S, Liu K, Maruoka K. J. Am. Chem. Soc. 2012; 134: 916
  • 39 Liu K, Wu X, Kan SB. J, Shirakawa S, Maruoka K. Chem. Asian J. 2013; 8: 3214
  • 40 Li S.-L, Yang C, Wu Q, Zheng H.-L, Li X, Cheng J.-P. J. Am. Chem. Soc. 2018; 140: 12836
  • 41 Lu S, Ng SV. H, Lovato K, Ong J.-Y, Poh SB, Ng XQ, Kürti L, Zhao Y. Nat. Commun. 2019; 10: 3061
  • 42 Xiao X, Lu Y.-J, Tian H.-Y, Zhou H.-J, Li J.-W, Yao Y.-P, Ke M.-L, Chen F.-E. Org. Chem. Front. 2022; 9: 2830
  • 43 Yang G.-H, Zheng H, Li X, Cheng J.-P. ACS Catal. 2020; 10: 2324
  • 44 Zheng G, Li X, Cheng J.-P. Org. Lett. 2021; 23: 3997
  • 45 Zhou Q.-Y, Li X. Chem. Commun. 2022; 58: 4727
  • 46 Guo C.-Q, Lu C.-J, Zhan L.-W, Zhang P, Xu Q, Feng J, Liu R.-R. Angew. Chem. Int. Ed. 2022; 61: e202212846
  • 47 Li D, Wang S, Ge S, Dong S, Feng X. Org. Lett. 2020; 22: 5331
  • 48 Ong J.-Y, Ng XQ, Lu S, Zhao Y. Org. Lett. 2020; 22: 6447
  • 49 Chen L.-P, Chen J.-F, Zhang Y.-J, He X.-Y, Han Y.-F, Xiao Y.-T, Lv G.-F, Lu X, Teng F, Sun Q, Li J.-H. Org. Chem. Front. 2021; 8: 6067
  • 50 Zhao Q, Peng C, Wang Y.-T, Zhan G, Han B. Org. Chem. Front. 2021; 8: 2772
  • 52 Wang P, Huang Y, Jing J, Wang F, Li X. Org. Lett. 2022; 24: 2531