Synthesis 2023; 55(16): 2586-2594
DOI: 10.1055/a-2067-4165
paper
Special Issue Honoring Prof. Guoqiang Lin’s Contributions to Organic Chemistry

Synthesis of Triarylphosphines via Cu-Catalyzed Coupling of Aryl Halides and Acylphosphines

Minghui Xu
,
Zhengping Zhu
,
Haojie Yi
,
Hong Zhu
,
Zhiqian Wang
Beijing Natural Science Foundation (Z200012) and National Natural Science Foundation of China (NSFC 21302010, 21571015).


Dedicated to Professor Guo-Qiang Lin on the occasion of his 80th birthday

Abstract

A Cu-catalyzed C(sp2)–P bond forming reaction using an acylphosphine as the phosphorus source is reported; with CuCl2 as the catalyst, 34 examples of aryl iodides and bromides were converted into triarylphosphines in good to excellent yield. A preliminary study of the mechanism was carried out and found that a radical intermediate is not involved. This reaction is an extension of the application of acylphosphines in Cu-catalyzed reactions and shows their potential as a phosphination reagent in the synthesis of tertiary phosphines.

Supporting Information



Publication History

Received: 15 February 2023

Accepted after revision: 31 March 2023

Accepted Manuscript online:
31 March 2023

Article published online:
26 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Jiang T, Zhang H, Ding Y, Zou S, Chang R, Huang H. Chem. Soc. Rev. 2020; 49: 1487
    • 1b Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 1c Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2008; 41: 581
    • 1d Yang J, Chen X, Wang Z. Tetrahedron Lett. 2015; 56: 5673
    • 2a Fernández-Pérez H, Etayo P, Panossian A, Vidal-Ferran A. Chem. Rev. 2011; 111: 2119
    • 2b Genet J.-P, Ayad T, Ratovelomanana-Vidal V. Chem. Rev. 2014; 114: 2824
    • 2c Xie C, Smaligo AJ, Song X.-R, Kwon O. ACS Cent. Sci. 2021; 7: 536
    • 2d Zhang W, Chi Y, Zhang X. Acc. Chem. Res. 2007; 40: 1278
    • 2e Zheng S, Lu X. Org. Lett. 2009; 11: 3978
    • 3a Balueva AS, Musina EI, Karasik AA. Phosphines: Preparation, Reactivity and Applications . In Organophosphorus Chemistry, Vol. 47. The Royal Society of Chemistry; Cambridge: 2018: 1-49
    • 3b Li J, Yang C, Bai Y, Yang X, Liu Y, Peng J. J. Organomet. Chem. 2018; 855: 7
    • 3c Montchamp J.-L. Acc. Chem. Res. 2014; 47: 77
    • 3d Padmaperuma AB, Sapochak LS, Burrows PE. Chem. Mater. 2006; 18: 2389
    • 3e Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
    • 3f Wendels S, Chavez T, Bonnet M, Salmeia KA, Gaan S. Materials 2017; 10: 784
    • 5a Chen X, Liu X, Zhu H, Wang Z. Tetrahedron 2021; 81: 131912
    • 5b Isshiki R, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 1150
    • 5c Liu C, Szostak M. Angew. Chem. Int. Ed. 2017; 56: 12718
    • 5d Rout L, Punniyamurthy T. Coord. Chem. Rev. 2021; 431: 213675
    • 5e Yu R, Chen X, Martin SF, Wang Z. Org. Lett. 2017; 19: 1808
    • 6a Hu G, Shan C, Chen W, Xu P, Gao Y, Zhao Y. Org. Lett. 2016; 18: 6066
    • 6b Liu X.-Y, Zou Y.-X, Ni H.-L, Zhang J, Dong H.-B, Chen L. Org. Chem. Front. 2020; 7: 980
    • 6c Zhang H, Li W, Zhu C. J. Org. Chem. 2017; 82: 2199
    • 6d Zhang H, Zhang X.-Y, Dong D.-Q, Wang Z.-L. RSC Adv. 2015; 5: 52824
    • 6e Li Y.-B, Tian H, Zhang S, Xiao J.-Z, Yin L. Angew. Chem. Int. Ed. 2022; 61: e202117760
    • 6f Zhang S, Xiao J.-Z, Li Y.-B, Shi C.-Y, Yin L. J. Am. Chem. Soc. 2021; 143: 9912
    • 6g Li Y.-B, Tian H, Yin L. J. Am. Chem. Soc. 2020; 142: 20098
    • 6h Yue W.-J, Xiao J.-Z, Zhang S, Yin L. Angew. Chem. Int. Ed. 2020; 59: 7057
    • 7a Allen DV, Venkataraman D. J. Org. Chem. 2003; 68: 4590
    • 7b Chao Z, Ma M, Gu Z. Org. Lett. 2020; 22: 6441
    • 7c Gelman D, Jiang L, Buchwald SL. Org. Lett. 2003; 5: 2315
    • 7d Li C.-J, Lü J, Zhang Z.-X, Zhou K, Li Y, Qi G.-H. Res. Chem. Intermed. 2018; 44: 4547
    • 7e Tani K, Behenna DC, McFadden RM, Stoltz BM. Org. Lett. 2007; 9: 2529
    • 7f Chen Q, Yan X, Wen C, Zeng J, Huang Y, Liu X, Zhang K. J. Org. Chem. 2016; 81: 9476
    • 7g Huang C, Tang X, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2006; 71: 5020
    • 7h Ke J, Tang Y, Yi H, Li Y, Cheng Y, Liu C, Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
    • 7i Yu Y, Yi S, Zhu C, Hu W, Gao B, Chen Y, Wu W, Jiang H. Org. Lett. 2016; 18: 400
    • 7j Zhou A.-X, Mao L.-L, Wang G.-W, Yang S.-D. Chem. Commun. 2014; 50: 8529
    • 7k Zhuang R, Xu J, Cai Z, Tang G, Fang M, Zhao Y. Org. Lett. 2011; 13: 2110
    • 7l Imamoto T, Kikuchi S.-i, Miura T, Wada Y. Org. Lett. 2001; 3: 87
    • 7m Imamoto T, Oshiki T, Onozawa T, Kusumoto T, Sato K. J. Am. Chem. Soc. 1990; 112: 5244
    • 7n Li Y, Das S, Zhou S, Junge K, Beller M. J. Am. Chem. Soc. 2012; 134: 9727
    • 7o Li Y, Lu L.-Q, Das S, Pisiewicz S, Junge K, Beller M. J. Am. Chem. Soc. 2012; 134: 18325
    • 7p Wu H.-C, Yu J.-Q, Spencer JB. Org. Lett. 2004; 6: 4675
    • 8a Chen X, Wu H, Yu R, Zhu H, Wang Z. J. Org. Chem. 2021; 86: 8987
    • 8b Yang J, Wu H, Wang Z. J. Saudi Chem. Soc. 2018; 22: 1
    • 8c Yu R, Chen X, Wang Z. Tetrahedron Lett. 2016; 57: 3404
    • 8d Zhang M, Ma Z, Du H, Wang Z. Tetrahedron Lett. 2020; 61: 152125
    • 9a Bunnett JF, Creary X. J. Org. Chem. 1974; 39: 3611
    • 9b Cristau H.-J, Cellier PP, Spindler J.-F, Taillefer M. Chem. Eur. J. 2004; 10: 5607
    • 9c He C, Guo S, Huang L, Lei A. J. Am. Chem. Soc. 2010; 132: 8273
    • 9d Bowman WR, Heaney H, Smith PH. G. Tetrahedron Lett. 1984; 25: 5821
    • 9e Paine AJ. J. Am. Chem. Soc. 1987; 109: 1496
  • 10 Tang Y.-P, Luo Y.-E, Xiang J.-F, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2022; 61: e202200638
  • 11 Xue M, Li J, Peng J, Bai Y, Zhang G, Xiao W, Lai G. Appl. Organomet. Chem. 2014; 28: 120
  • 12 Guo R, Sang J, Xiao H, Li J, Zhang G. Chin. J. Chem. 2022; 40: 1337
  • 13 Le Gall E, Aïssi KB, Lachaise I, Troupel M. Synlett 2006; 954