Synthesis 2023; 55(17): 2639-2647
DOI: 10.1055/a-2072-2754
short review

Reactions of Benzylboronate Nucleophiles

Timothy J. Barker
,
Andrew Bogatkevich
,
Dallas W. Crowder
,
Sophia G. Gierszal
,
Jacob C. Hayes
,
Michael R. Hollerbach
,
Richard W. Russell
Financial support is acknowledged from the National Center for Research Resources (5P20RR016461) and the National Institute of General Medical Sciences (8P20GM103499) from the NIH. Additional support was provided to M.R.H. by the Howard Hughes Medical Institute to the College of Charleston as part of their 2012 Undergraduate Science Education Competition and to S.G.G. from an Organic Syntheses PUI grant. The NMR spectrometer at the College of Charleston was supported by the National Science Foundation under Grant No. 1429308.


Abstract

This short review summarizes our laboratory’s development of benzylboronic esters as nucleophiles. Activation of the benzylboronic ester is achieved by irreversible coordination of an alkyllithium Lewis base to form a nucleophilic benzylboronate. This boronate was found to react with aldehydes, imines, ketones, and alkyl bromides. A copper catalyst was employed in reactions of the boronate with epoxides and aziridines.

1 Introduction

2 1,2-Additions

3 Additions to sp3 Electrophiles

4 Conclusion and Outlook

Supporting Information



Publication History

Received: 09 March 2023

Accepted after revision: 12 April 2023

Accepted Manuscript online:
12 April 2023

Article published online:
08 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 3a Yang X, Kalita SJ, Maheshuni S, Huang Y.-Y. Coord. Chem. Rev. 2019; 392: 35
    • 3b Kalita SJ, Cheng F, Huang Y.-Y. Adv. Synth. Catal. 2020; 362: 2778
    • 3c Friese FW, Studer A. Chem. Sci. 2019; 10: 8503
    • 3d Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
    • 3e Crudden CM, Glasspoole BW, Lata CJ. Chem. Commun. 2009; 6704
    • 3f Doucet H. Eur. J. Org. Chem. 2008; 2013
    • 4a Lachance H, Hall DG. Org. React. 2008; 73: 1
    • 4b Hall DG. Synlett 2007; 1644
    • 4c Yus M, Gonzalez-Gomez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
    • 4d Diner C, Szabo KJ. J. Am. Chem. Soc. 2017; 139: 2
    • 4e Huo H.-X, Duvall JR, Huang M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303
    • 4f Jonnalagadda SC, Suman P, Patel A, Jampana G, Colfer A. Allylboration . In Boron Reagents in Synthesis . Coca A. ACS Symposium Series 1236; American Chemical Society; Washington DC: 2016: 67
    • 4g Ramachandran PV, Gagare PD, Nicponski DR. In Comprehensive Organic Synthesis, 2nd ed., Vol. 2. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 1
    • 4h Elford TG, Hall DG. In Boronic Acids . Hall DG. John Wiley & Sons; Hoboken: 2011: 393
    • 5a Sandford C, Aggarwal VK. Chem. Commun. 2017; 53: 5481
    • 5b Aiken SG, Bateman JM, Aggarwal VK. In Science of Synthesis: Advances in Organoboron Chemistry towards Organic Synthesis . Fernandez E. Thieme; Stuttgart: 2020: 393
    • 5c Larouche-Gauthier R, Elford TG, Aggarwal VK. J. Am. Chem. Soc. 2011; 133: 16794
    • 6a Leonori D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
    • 6b Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 6c Namirembe S, Morken JP. Chem. Soc. Rev. 2019; 48: 3464
    • 6d Reichle MA, Breit B. Angew. Chem. Int. Ed. 2012; 51: 5730
  • 7 Pintaric C, Olivero S, Gimbert Y, Chavant PY, Dunach E. J. Am. Chem. Soc. 2010; 132: 11825
    • 8a Atack TC, Lecker RM, Cook SP. J. Am. Chem. Soc. 2014; 136: 9521
    • 8b Ito H, Kubota K. Org. Lett. 2012; 14: 890
    • 8c Yang C.-T, Zhang Z.-Q, Tajuddin H, Wu C.-C, Liang J, Liu J.-H, Fu Y, Czyzewska M, Steel PG, Marder TB, Liu L. Angew. Chem. Int. Ed. 2012; 51: 528
    • 8d Murata M, Oyama T, Watanabe S, Masuda Y. Synth. Commun. 2002; 32: 2513
    • 8e Palmer WN, Obligacion JV, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 766
    • 9a Stymiest JL, Bagutski V, French RM, Aggarwal VK. Nature 2008; 456: 778
    • 9b Mlynarski SN, Karns AS, Morken JP. J. Am. Chem. Soc. 2012; 134: 16449
    • 9c Bagutski V, Elford TG, Aggarwal VK. Angew. Chem. Int. Ed. 2011; 50: 1080
    • 9d Bonet A, Odachowski M, Leonori D, Essafi S, Aggarwal VK. Nat. Chem. 2014; 6: 584
    • 10a Larsen MA, Wilson CV, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 8633
    • 10b Sueki S, Kuninobu Y. Org. Lett. 2013; 15: 1544
  • 11 Feeney K, Berionni G, Mayr H, Aggarwal VK. Org. Lett. 2015; 17: 2614
  • 12 Hollerbach MR, Barker TJ. Organometallics 2018; 37: 1425
  • 13 Zou G, Falck JR. Tetrahedron Lett. 2001; 42: 5817
  • 14 Sandford C, Rasappan R, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 10100
  • 15 Bose SK, Brand S, Omoregie HO, Haehnel M, Maier J, Bringmann G, Marder TB. ACS Catal. 2016; 6: 8332
  • 16 Barker, T. J.; Gierszal, S. G.; 2021, unpublished results.
  • 17 Hollerbach MR, Hayes JC, Barker TJ. Eur. J. Org. Chem. 2019; 1646
  • 18 Lee S, Lee WM, Yun J. Adv. Synth. Catal. 2015; 357: 2219
    • 19a Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
    • 19b Plasko DP, Jordan CJ, Ciesa BE, Merrill MA, Hanna JM. Jr. Photochem. Photobiol. Sci. 2018; 17: 534
  • 20 Buesking AW, Baguley TD, Ellman JA. Org. Lett. 2011; 13: 964
  • 21 Hayes JC, Hollerbach MR, Barker TJ. Tetrahedron Lett. 2020; 61: 151505
  • 22 Tatić T, Hermann S, Stalke D. Organometallics 2012; 31: 5615
  • 23 Dobson LS, Pattison G. Chem. Commun. 2016; 52: 11116
  • 24 Russell RW, Barker TJ. Eur. J. Org. Chem. 2021; 2782
    • 26a Murray B, Zhao S, Aramini JM, Wang H, Biscoe MR. ACS Catal. 2021; 11: 2504
    • 26b Zhao S, Gensch T, Murray B, Niemeyer ZL, Sigman MS, Biscoe MR. Science 2018; 362: 670
    • 26c Li L, Zhao S, Joshi-Pangu A, Diane M, Biscoe MR. J. Am. Chem. Soc. 2014; 136: 14027
    • 26d Lehmann JW, Crouch IT, Blair DJ, Trobe M, Wang P, Li J, Burke MD. Nat. Commun. 2019; 10: 1263
    • 27a Grigg RD, Rigoli JW, Van Hoveln R, Neale S, Schomaker JM. Chem. Eur. J. 2012; 18: 9391
    • 27b Takeda M, Nagao K, Ohmiya H. Angew. Chem. Int. Ed. 2020; 59: 22460
  • 28 Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
  • 29 Sorin G, Martinez Mallorquin R, Contie Y, Baralle A, Malacria M, Goddard J.-P, Fensterbank L. Angew. Chem. Int. Ed. 2010; 49: 8721
  • 30 Gierszal SG, Barker TJ. Tetrahedron Lett. 2021; 82: 153369
    • 31a Kjellgren J, Aydin J, Wallner OA, Saltanova IV, Szabó KJ. Chem. Eur. J. 2005; 11: 5260
    • 31b Nielsen DK, Doyle AG. Angew. Chem. Int. Ed. 2011; 50: 6056
    • 31c Lu X.-Y, Yan L.-Y, Li J.-S, Li J.-M, Zhou H.-p, Jiang R.-C, Liu C.-C, Lu R, Hu R. Chem. Commun. 2020; 56: 109
    • 31d Lu X.-Y, Li J.-S, Wang J.-Y, Wang S.-Q, Li Y.-M, Zhu Y.-J, Zhou R, Ma W.-J. RSC Adv. 2018; 8: 41561
    • 31e Lu X.-Y, Yang C.-T, Liu J.-H, Zhang Z.-Q, Lu X, Lou X, Xiao B, Fu Y. Chem. Commun. 2015; 51: 2388
  • 32 Ebrahim-Alkhalil A, Zhang Z.-Q, Gong T.-J, Su W, Lu X.-Y, Xiao B, Fu Y. Chem. Commun. 2016; 52: 4891
  • 33 Alam M, Wise C, Baxter CA, Cleator E, Walkinshaw A. Org. Process Res. Dev. 2012; 16: 435
    • 34a Dale JA, Dull DL, Mosher HS. J. Org. Chem. 1969; 34: 2543
    • 34b Dale JA, Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
  • 35 Barker, T. J.; Crowder, D. W.; Gierszal, S. G. 2022, unpublished results.
  • 36 Jeong JU, Tao B, Sagasser I, Henniges H, Sharpless KB. J. Am. Chem. Soc. 1998; 120: 6844
  • 37 Bieber WL, De Araújo CF. M. Molecules 2002; 7: 902
  • 38 Favero L, Menichetti A, Boldrini C, Comparini LM, Di Bussolo V, Di Pietro S, Pineschi M. Molecules 2021; 26: 7399
  • 39 Garcia-Ruiz C, Chen JL. Y, Sandford C, Feeney K, Lorenzo P, Berionni G, Mayr H, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 15324
  • 40 Xu N, Liang H, Morken JP. J. Am. Chem. Soc. 2022; 144: 11546