Synthesis 2023; 55(20): 3209-3238
DOI: 10.1055/a-2083-8591
review

Silyl Esters as Reactive Intermediates in Organic Synthesis

Melissa C. D’Amaral
a   Department of Chemistry & Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
,
Keith G. Andrews
b   School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, UK
,
Ross Denton
b   School of Chemistry, University of Nottingham, University Park Nottingham, NG7 2RD, UK
,
Marc J. Adler
a   Department of Chemistry & Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
› Institutsangaben


Abstract

Silyl esters have been exploited as metastable reaction intermediates, both purposefully and unintentionally, since at least the 1960s. Their reactivity is broadly related to the substituents on the silicon, and in this way their properties can be readily modulated. Silyl esters have unique reactivity profiles that have been used to generate downstream products of a range of functionalities, and because of this many excellent methods for the synthesis of a variety of value-added chemicals have been developed. Furthermore, because of the frequent use of hydrosilanes as terminal reductants in catalytic processes, silyl ester intermediates are likely more commonly utilized by synthetic chemists than currently realized. This review comprehensively summarizes the reactions known to take advantage of reactive silyl ester intermediates and discusses examples of catalytic reactions that proceed in an unanticipated manner through silyl ester intermediates.

1 Introduction

2 Synthesis of Silyl Esters

3 Making Amides from Silyl Esters

3.1 Amidation Using Chlorosilanes

3.2 Amidation Using Azasilanes

3.3 Amidation Using Oxysilanes

3.4 Amidation Using Hydrosilanes

3.5 Amine Formation via Amidation/Reduction

3.6 Miscellaneous

4 Mechanistic Investigations of Amidation

4.1 Mechanism of Amidation Using Chlorosilanes

4.2 Mechanism of Amidation Using Hydrosilanes

4.3 Mechanism of Amidation Using Oxy- or Azasilanes

5 Making Esters from Silyl Esters

6 Making Aldehydes, Alcohols, Amines, and Alkanes via Reduction

6.1 Aldehyde Synthesis by Metal-Free Reduction

6.2 Aldehyde Synthesis by Metal-Mediated Reduction

6.3 Alcohol Synthesis by Metal-Mediated Reduction

6.4 Amine Synthesis

6.5 Alkane Synthesis by Metal-Free Reduction

7 Making Acid Chlorides from Silyl Esters

8 In Situ Generated Silyl Esters and Ramifications for Catalysis

9 Conclusion



Publikationsverlauf

Eingereicht: 14. Dezember 2022

Angenommen nach Revision: 28. April 2023

Accepted Manuscript online:
28. April 2023

Artikel online veröffentlicht:
26. Juni 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Yur’ev YK, Belyakova ZV. Russ. Chem. Rev. 1960; 29: 383
  • 2 Wuts PG. M. Protection for the Carboxyl Group. In Greene’s Protective Groups in Organic Synthesis, 5th ed. John Wiley & Sons; Hoboken NJ: 2014: 533-646
  • 3 Combs JR, Lai YC, Van Vranken DL. Org. Lett. 2021; 23: 2841
  • 4 Fujita T, Yamane M, Ameera WM. C. S, Mitsunuma H, Kanai M. Angew. Chem. Int. Ed. 2021; 60: 24598
  • 5 Hudrlik PF, Feasley R. Tetrahedron Lett. 1972; 13: 1781
  • 6 Weinberg JM, Gitto SP, Wooley KL. Macromolecules 1998; 31: 15
  • 7 Wang M, Gan D, Wooley KL. Macromolecules 2001; 34: 3215
  • 8 Wang M, Weinberg JM, Wooley KL. Macromolecules 1998; 31: 7606
  • 9 Gitto SP, Wooley KL. Macromolecules 1995; 28: 8887
    • 10a Muramatsu W, Yamamoto H. J. Am. Chem. Soc. 2019; 141: 18926
    • 10b Muramatsu W, Hattori T, Yamamoto H. J. Am. Chem. Soc. 2019; 141: 12288
  • 11 Kagiya T, Sumida Y, Tachi T. Bull. Chem. Soc. Jpn. 1970; 43: 3716

    • Silyl esters have also been accessed through esters and anhydrides:
    • 12a Mbah GC, Speier JL. J. Organomet. Chem. 1984; 271: 77
    • 12b Sauer RO, Patnode W. J. Am. Chem. Soc. 1945; 67: 1548
    • 12c Schuyten HA, Weaver JW, Reid JD. J. Am. Chem. Soc. 1947; 69: 2110
    • 12d Post HW, Hofrichter CH. Jr. J. Org. Chem. 1940; 5: 443
    • 12e Friedel C, Ladenburg A. Justus Liebigs Ann. Chem. 1868; 145: 174
  • 13 Aizpurua JM, Palomo C. Can. J. Chem. 1984; 62: 336
  • 14 Palomo C. Synthesis 1981; 809
  • 15 Jereb M, Lakner J. Tetrahedron 2016; 72: 5713
  • 16 Chauhan M, Chauhan BP. S, Boudjouk P. Org. Lett. 2000; 2: 1027
  • 17 Liu GB, Zhao HY, Thiemann T. Synth. Commun. 2007; 37: 2717
  • 18 Liu GB. Synlett 2006; 1431
  • 19 Schubert U, Lorenz C. Inorg. Chem. 1997; 36: 1258
  • 20 Julián A, Garcés K, Lalrempuia R, Jaseer EA, García-Orduña P, Fernández-Alvarez FJ, Lahoz FJ, Oro LA. ChemCatChem 2018; 10: 1027
  • 21 Vijjamarri S, Chidara VK, Rousova J, Du G. Catal. Sci. Technol. 2016; 6: 3886
  • 22 Liu G.-B, Zhao HY, Thiemann T. Adv. Synth. Catal. 2007; 349: 807
  • 23 Ojima Y, Yamaguchi K, Mizuno N. Adv. Synth. Catal. 2009; 351: 1405
  • 24 Stoll EL, Tongue T, Andrews KG, Valette D, Hirst DJ, Denton RM. Chem. Sci. 2020; 11: 9494
  • 25 Morisset E, Chardon A, Rouden J, Blanchet J. Eur. J. Org. Chem. 2020; 2020: 388
  • 26 Sayes M, Charette AB. Green Chem. 2017; 19: 5060
  • 27 Niu H, Lu L, Shi R, Chiang CW, Lei A. Chem. Commun. 2017; 53: 1148
  • 28 Rauch M, Strater Z, Parkin G. J. Am. Chem. Soc. 2019; 141: 17754
  • 29 Hulla M, Nussbaum S, Bonnin AR, Dyson PJ. Chem. Commun. 2019; 55: 13089
  • 30 Fernández-Alvarez FJ, Aitani AM, Oro LA. Catal. Sci. Technol. 2014; 4: 611
  • 31 Fernández-Alvarez FJ, Oro LA. ChemCatChem 2018; 10: 4783
  • 32 Chen J, McGraw M, Chen EY. X. ChemSusChem 2019; 12: 4543
  • 33 Li Y, Cui X, Dong K, Junge K, Beller M. ACS Catal. 2017; 7: 1077
  • 34 Motokura K, Kashiwame D, Takahashi N, Miyaji A, Baba T. Chem. Eur. J. 2013; 19: 10030
  • 35 Fang C, Lu C, Liu M, Zhu Y, Fu Y, Lin BL. ACS Catal. 2016; 6: 7876
  • 36 Motokura K, Naijo M, Yamaguchi S, Miyaji A, Baba T. Chem. Lett. 2015; 44: 1217
  • 37 Itagaki S, Yamaguchi K, Mizuno N. J. Mol. Catal. A: Chem. 2013; 366: 347
  • 38 Hulla M, Laurenczy G, Dyson PJ. ACS Catal. 2018; 8: 10619
  • 39 Murata T, Hiyoshi M, Ratanasak M, Hasegawa JY, Ema T. Chem. Commun. 2020; 56: 5783
  • 40 Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T. J. Am. Chem. Soc. 2012; 134: 2934
  • 41 Frogneux X, Jacquet O, Cantat T. Catal. Sci. Technol. 2014; 4: 1529
  • 42 Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ. Green Chem. 2018; 20: 5082
  • 43 Davies JJ, Braddock DC, Lickiss PD. Org. Biomol. Chem. 2021; 19: 6746
  • 44 McKnelly KJ, Sokol W, Nowick JS. J. Org. Chem. 2020; 85: 1764
  • 45 Hollanders K, Maes BU. W, Ballet S. Synthesis 2019; 51: 2261
  • 46 Pattabiraman VR, Bode JW. Nature 2011; 480: 471
  • 47 Wang K, Lu Y, Ishihara K. Chem. Commun. 2018; 54: 5410
  • 48 Liu S, Yang Y, Liu X, Ferdousi FK, Batsanov AS, Whiting A. Eur. J. Org. Chem. 2013; 2013: 5692
  • 49 Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
  • 50 Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
  • 51 Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
  • 52 Sabatini MT, Boulton LT, Sheppard TD. Sci. Adv. 2017; 3: 1
  • 53 Coomber CE, Laserna V, Martin LT, Smith PD, Hailes HC, Porter MJ, Sheppard TD. Org. Biomol. Chem. 2019; 17: 6465
  • 54 De Figueiredo RM, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
  • 55 Sabatini MT, Boulton LT, Sneddon HF, Sheppard TD. Nat. Catal. 2019; 2: 10
  • 56 Chan TH, Wong LT. L. J. Org. Chem. 1969; 34: 2766
  • 57 Chan TH, Wong LT. L. J. Org. Chem. 1971; 36: 850
  • 58 Van Leeuwen SH, Quaedflieg PJ. L. M, Broxterman QB, Liskamp RM. J. Tetrahedron Lett. 2002; 43: 9203
  • 59 Nobuta T, Morishita H, Suto Y, Yamagiwa N. Synlett 2022; 33: 1563
  • 60 Aspin SJ, Taillemaud S, Cyr P, Charette AB. Angew. Chem. Int. Ed. 2016; 55: 13833
  • 61 Chou WC, Chou MC, Lu YY, Chen SF. Tetrahedron Lett. 1999; 40: 3419
  • 62 Tozawa T, Yamane Y, Mukaiyama T. Chem. Lett. 2005; 34: 734
  • 63 Tozawa T, Yamane Y, Mukaiyama T. Chem. Lett. 2005; 34: 1334
  • 64 Tozawa T, Yamane Y, Mukaiyama T. Chem. Lett. 2005; 34: 1586
  • 65 Tozawa T, Yamane Y, Mukaiyama T. Heterocycles 2006; 67: 629
  • 66 Braddock DC, Lickiss PD, Rowley BC, Pugh D, Purnomo T, Santhakumar G, Fussell SJ. Org. Lett. 2018; 20: 950
  • 67 Braddock DC, Davies JJ, Lickiss PD. Org. Lett. 2022; 24: 1175
  • 68 Lainer T, Czerny F, Haas M. Org. Biomol. Chem. 2022; 20: 3717
  • 69 Muramatsu W, Manthena C, Nakashima E, Yamamoto H. ACS Catal. 2020; 10: 9594
  • 70 Muramatsu W, Yamamoto H. Org. Lett. 2022; 24: 7194
  • 71 Ruan Z, Lawrence RM, Cooper CB. Tetrahedron Lett. 2006; 47: 7649
  • 72 Kosal AD, Wilson EE, Ashfeld BL. Angew. Chem. Int. Ed. 2012; 51: 12036
  • 73 Andrews KG, Denton RM. Chem. Commun. 2017; 53: 7982
  • 74 White PB, Rijpkema SJ, Bunschoten RP, Mecinović J. Org. Lett. 2019; 21: 1011
  • 75 D’Amaral MC, Jamkhou N, Adler MJ. Green Chem. 2021; 23: 288
  • 76 Andrews KG, Summers DM, Donnelly LJ, Denton RM. Chem. Commun. 2016; 52: 1855
  • 77 Cheng C, Brookhart M. J. Am. Chem. Soc. 2012; 134: 11304
  • 78 Krysin EP, Karel VN, Antonov AA, Rostovskya GE. Chem. Nat. Compd. 1979; 15: 601
  • 79 Jiang YY, Zhu L, Liang Y, Man X, Bi S. J. Org. Chem. 2017; 82: 9087
  • 80 Hu B, Jiang YY, Liu P, Zhang RX, Zhang Q, Liu TT, Bi S. Org. Biomol. Chem. 2019; 17: 9232
  • 81 From ref. 76: Geometry Optimization Was Conducted with TheωB97X-D Method, Def2-SVP Basis Set and SMD Solvation Model (Solvent = Acetonitrile).
  • 82 Gevorgyan V, Rubin M, Liu JX, Yamamoto Y. J. Org. Chem. 2001; 66: 1672
  • 83 Bézier D, Park S, Brookhart M. Org. Lett. 2013; 15: 496
  • 84 Corriu RJ. P, Lanneau GF, Perrot M. Tetrahedron Lett. 1987; 28: 3941
  • 85 Andrews KG, Faizova R, Denton RM. Nat. Commun. 2017; 8: 15913
  • 86 Venkateswaran PS, Bardos TJ. J. Org. Chem. 1967; 32: 1256
  • 87 Chandrasekhar S, Kumar MS, Muralidhar B. Tetrahedron Lett. 1998; 39: 909
  • 88 Matsubara K, Iura T, Maki T, Nagashima H. J. Org. Chem. 2002; 67: 4985
  • 89 Miyamoto K, Motoyama Y, Nagashima H. Chem. Lett. 2012; 41: 229
  • 90 Fernández-Salas JA, Manzini S, Nolan SP. Adv. Synth. Catal. 2014; 356: 308
  • 91 Castro LC. M, Li H, Sortais JB, Darcel C. Chem. Commun. 2012; 48: 10514
  • 92 Zheng J, Chevance S, Darcel C, Sortais JB. Chem. Commun. 2013; 49: 10010
  • 93 Antico E, Schlichter P, Werlé C, Leitner W. JACS Au 2021; 1: 742
  • 94 Wei D, Buhaibeh R, Canac Y, Sortais JB. Org. Lett. 2019; 21: 7713
  • 95 Bajracharya GB, Nogami T, Jin T, Matsuda K, Gevorgyan V, Yamamoto Y. Synthesis 2004; 308
  • 96 Nimmagadda RD, McRae C. Tetrahedron Lett. 2006; 47: 3505
  • 97 Stoll EL, Barber T, Hirst DJ, Denton RM. Chem. Commun. 2022; 58: 3509
  • 98 Wissner A, Grudzinskas CV. J. Org. Chem. 1978; 43: 3972
    • 99a O’Brien CJ, Tellez JL, Nixon ZS, Kang LJ, Carter AL, Kunkel SR, Przeworski KC, Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
    • 99b O’Brien CJ, Lavigne F, Coyle EE, Holohan AJ, Doonan BJ. Chem. Eur. J. 2013; 19: 5854
    • 99c Handoko, Panigrahi NR, Arora PS. J. Am. Chem. Soc. 2022; 144: 3637
    • 99d Lipshultz JM, Radosevich AT. J. Am. Chem. Soc. 2021; 143: 14487
    • 99e Lecomte M, Lipshultz JM, Kim-Lee SH, Li G, Radosevich AT. J. Am. Chem. Soc. 2019; 141: 12507
    • 99f Wang A, Xie Y, Wang J, Shi D, Yu H. Chem. Commun. 2022; 58: 1127
    • 99g Wei D, Netkaew C, Darcel C. Adv. Synth. Catal. 2019; 361: 1781
    • 99h Liu Z, Wu C, Luo X, Zhang H, Liu X, Ji G, Liu Z. Green Chem. 2017; 19: 3525
    • 99i Ogiwara Y, Uchiyama T, Sakai N. Angew. Chem. Int. Ed. 2016; 55: 1864
    • 99j Wang T, Xu H, He J, Zhang Y. Tetrahedron 2020; 76: 131394
    • 99k Sorribes I, Junge K, Beller M. J. Am. Chem. Soc. 2014; 136: 14314
    • 99l Fu MC, Shang R, Cheng WM, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 9042
    • 99m Nguyen TV. Q, Yoo WJ, Kobayashi S. Adv. Synth. Catal. 2016; 358: 452
    • 99n Huang DW, Liu YH, Peng SM, Liu ST. Dalton Trans. 2016; 45: 8265
    • 99o Bhunia M, Sahoo SR, Shaw BK, Vaidya S, Pariyar A, Vijaykumar G, Adhikari D, Mandal SK. Chem. Sci. 2019; 10: 7433
  • 100 Garcia J, Urpí F, Vilarrasa J. Tetrahedron Lett. 1984; 25: 4841
  • 101 Kirk AM, O’Brien CJ, Krenske EH. Chem. Commun. 2020; 56: 1227