Synthesis 2023; 55(21): 3644-3651
DOI: 10.1055/a-2088-4302
special topic
C–H Bond Functionalization of Heterocycles

Selective Deuteration of Heterocycle N-Oxides via Iridium-Catalysed Hydrogen Isotope Exchange

Philippa K. Owens
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
,
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
,
Sebastien Campos
b   Medicines Research Centre, GlaxoSmithKline R & D, Stevenage SG1 2NY, UK
,
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
,
a   Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
› Author Affiliations
The authors thank the University of Strathclyde (B.I.P.S.; studentship), and GlaxoSmithKline and the EPSRC (P.K.O.; studentship EP/L505663/1) for funding.


Abstract

An iridium(I) N-heterocyclic carbene/phosphine complex has been applied to the C–H activation and hydrogen isotope exchange of quinoline N-oxides. The isotope labelling proceeds under exceptionally low catalyst loadings of 0.25 mol% and delivers products with high levels of deuterium incorporation selectively at the C8 position. A broad substrate scope is demonstrated, with the method tolerant of electron-poor and -rich substrates, and of substitution adjacent to the site of C–H activation. The isotope label is fully retained under standard deoxygenation conditions to give the corresponding labelled quinoline, and the labelling and deoxygenation can be combined in a one-pot procedure.

Supporting Information



Publication History

Received: 01 March 2023

Accepted after revision: 08 May 2023

Accepted Manuscript online:
08 May 2023

Article published online:
01 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Present Address: Pharmaron, Drug Discovery Services Europe, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire, EN11 9FH, UK.
    • 2a Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
    • 2b Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
    • 3a Hesk D. J. Labelled Compd. Radiopharm. 2020; 63: 247
    • 3b Valero M, Derdau D. J. Labelled Compd. Radiopharm. 2020; 63: 266
    • 3c Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022

    • For a review of base metal-catalysed HIE, see:
    • 3d Yang H, Hesk D. J. Labelled Compd. Radiopharm. 2020; 63: 296
  • 4 For a recent review, see: Kerr WJ, Knox GJ, Paterson LC. J. Labelled Compd. Radiopharm. 2020; 63: 281
    • 5a Brown JA, Cochrane AR, Irvine S, Kerr WJ, Mondal B, Parkinson JA, Paterson LC, Reid M, Tuttle T, Andersson S, Nilsson GN. Adv. Synth. Catal. 2014; 356: 3651
    • 5b Kennedy AR, Kerr WJ, Moir R, Reid M. Org. Biomol. Chem. 2014; 12: 7927

      See, for example:
    • 6a Atzrodt J, Derdau V, Kerr WJ, Reid M, Rojahn P, Weck R. Tetrahedron 2015; 71: 1924
    • 6b Kerr WJ, Mudd RJ, Owens PK, Reid M, Brown JA, Campos S. J. Labelled Compd. Radiopharm. 2016; 59: 601
    • 6c Kerr WJ, Lindsay DM, Reid M, Atzrodt J, Derdau V, Rojahn P, Weck R. Chem. Commun. 2016; 52: 6669
  • 7 Kerr WJ, Lindsay DM, Owens PK, Reid M, Tuttle T, Campos S. ACS Catal. 2017; 7: 7182
  • 8 Singha K, Habib I, Hossain M. ChemistrySelect 2022; 7: e202203537
  • 9 Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2009; 9: 1648
  • 10 For a review of C–H functionalisation of quinolines, including via the N-oxide, see: Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031

    • For recent examples, see:
    • 11a An W, Lee SH, Kim D, Oh H, Kim S, Byun Y, Kim HJ, Mishra NK, Kim IS. J. Org. Chem. 2021; 86: 7579
    • 11b Dhiman AK, Gupta SS, Sharma R, Kumar R, Sharma U. J. Org. Chem. 2019; 84: 12871
    • 11c You C, Yuan T, Huang Y, Pi C, Wu Y, Cui X. Org. Biomol. Chem. 2018; 16: 4728
    • 11d Chen X, Cui X, Wu Y. Org. Lett. 2016; 18: 3722
    • 11e Hwang H, Kim J, Jeong J, Chang S. J. Am. Chem. Soc. 2014; 136: 10770
    • 12a Valero M, Burhop A, Jess K, Weck R, Tamm M, Atzrodt J, Derdau V. J. Labelled Compd. Radiopharm. 2018; 61: 380 . One isoquinoline N-oxide and two pyridine N-oxide derivatives were also labelled to more moderate levels
    • 12b For a single example of the labelling of a pyridine N-oxide using rhodium catalysis, see: Chen S, Song G, Li X. Tetrahedron Lett. 2008; 49: 6929
    • 12c For base-catalysed labelling of pyridine N-oxides, see: Pavlik JW, Laohhasurayotin S. J. Heterocycl. Chem. 2005; 42: 73
  • 13 See the Supporting Information for details.
    • 14a Devlin J, Kerr WJ, Lindsay DM, McCabe TJ. D, Reid M, Tuttle T. Molecules 2015; 20: 11676
    • 14b Timofeeva DS, Lindsay DM, Kerr WJ, Nelson D. J. Catal. Sci. Technol. 2020; 10: 7249
  • 15 World Health Organisation; WHO Model List of Essential Medicines, 22nd List (30th September 2021), 2021. See (accessed February 3, 2023): https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02
  • 16 Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals . Butterworth-Heinemann; Oxford: 2009
  • 17 Kerr WJ, Mudd RJ, Reid M, Atzrodt J, Derdau V. ACS Catal. 2018; 8: 10895
  • 18 Cochrane AR, Kennedy AR, Kerr WJ, Lindsay DM, Reid M, Tuttle T. Catalysts 2020; 10: 161
  • 19 Kwak J, Kim M, Chang S. J. Am. Chem. Soc. 2011; 133: 3780
  • 20 Hwang H, Kim J, Jeong J, Chang S. J. Am. Chem. Soc. 2014; 136: 10770
  • 21 Popov KK, Campbell JL. P, Kysilka O, Hošek J, Davies CD, Pour M, Kočovský P. J. Org. Chem. 2022; 87: 920
  • 22 Stephens DE, Chavez G, Valdes M, Dovalina M, Aman HD, Larionov OV. Org. Biomol. Chem. 2014; 12: 6190
  • 23 Tröster A, Alonso R, Bauer A, Bach T. J. Am. Chem. Soc. 2016; 138: 7808
  • 24 Matsumoto J, Li J, Dohno C, Nakatani K. Bioorg. Med. Chem. Lett. 2016; 26: 3761
  • 25 Liao X, Zhou Y, Ai C, Ye C, Chen G, Yan Z, Lin S. Tetrahedron Lett. 2021; 84: 153457
  • 26 Kim SH, An JH, Lee JH. Org. Biomol. Chem. 2021; 19: 3735
  • 27 Sasaki K, Tsuromori A, Hirota T. J. Chem. Soc., Perkin Trans. 1 1998; 3851
  • 28 An JH, Kim KD, Lee JH. J. Org. Chem. 2021; 86: 2876
  • 29 Roe RJr, Paul JS, Montgomery PO'B. Jr. J. Heterocycl. Chem. 1972; 9: 1097
  • 30 Rodrigo E, Baunis H, Suna E, Waldvogel SR. Chem. Commun. 2019; 55: 12255
  • 31 Wengryniuk SE, Weickgenannt A, Reiher C, Strotman NA, Chen K, Eastgate MD, Baran PS. Org. Lett. 2013; 15: 792
  • 32 Larionov OV, Stephens D, Mfuh AM, Arman HD, Naumova AS, Chavez G, Skenderia B. Org. Biomol. Chem. 2014; 12: 3026
  • 33 Avendaño C, Moreno T, Fernández M, de la Cuesta E. Heterocycles 1996; 43: 817
  • 34 Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. J. Org. Chem. 2020; 85: 9244
  • 35 Kudo Y, Furumoto S, Okamura N. Patent EP2634177, 2013
  • 36 Todorov AR, Aikonen S, Muuronen M, Helaja J. Org. Lett. 2019; 21: 3764
  • 37 Sylvester KT, Wu K, Doyle AG. J. Am. Chem. Soc. 2012; 134: 16967
  • 38 Kuriyama M, Hamaguchi N, Yano G, Tsukuda K, Sato K, Onomura O. J. Org. Chem. 2016; 81: 8934