CC BY 4.0 · Synlett
DOI: 10.1055/a-2223-7245
synpacts

Topological Bistability of the π-System in a Helicene Carbon Nanohoop

Juraj Malinčík
a   Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
b   Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia
,
a   Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
b   Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia
› Author Affiliations
Funding for this work was provided by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 949397).


Abstract

Molecules with a π-system that can be mapped onto a Möbius strip may display Möbius aromaticity. Such molecules are difficult to synthesize because they have a twisted structure. Recently, we combined chiral [6]helicene and fluorescent [7]cycloparaphenylene, and synthesized the first helicene para-phenylene ([6,7]HPP) carbon nanohoop. We have demonstrated that this design strategy ultimately provides a Möbius topology of the molecular π-electron system and, therefore, offers the potential to study Möbius aromaticity experimentally. In addition, the synthesized nanohoop exists as a mixture of conformers in solution. Some of the conformers possess a different orientability of their π-systems, i.e., they differ in their topology. As a result, the recorded circularly polarized luminescence of isolated enantiomers displays both left- and right-handedness of the emitted light, each emanating from a conformer with a different π-system topology. Therefore, [6,7]HPP provided the first experimental evidence of such topological bistability in carbon nanohoops.



Publication History

Received: 28 November 2023

Accepted: 06 December 2023

Accepted Manuscript online:
06 December 2023

Article published online:
17 January 2024

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Heilbronner E. Tetrahedron Lett. 1964; 1923
  • 2 Dobrowolski JC. J. Chem. Inf. Comput. Sci. 2002; 42: 490
  • 3 Zoellner RW, Krebs JF, Browne DM. J. Chem. Inf. Comput. Sci. 1994; 34: 252
  • 4 Martín-Santamaría S, Lavan B, Rzepa HS. Chem. Commun. 2000; 1089
  • 5 Türker L. J. Mol. Struct.: THEOCHEM 1998; 454: 83
  • 6 Guillaume M, Champagne B, Perpète EA, André J.-M. Theor. Chem. Acc. 2001; 105: 431
  • 7 Martín-Santamaría S, Rzepa HS. J. Chem. Soc., Perkin Trans. 2 2000; 2378
  • 8 Rzepa HS. Chem. Rev. 2005; 105: 3697
  • 9 Herges R. Chem. Rev. 2006; 106: 4820
  • 10 Schleyer P. vanR, Barborak JC, Su TM, Boche G, Schneider G. J. Am. Chem. Soc. 1971; 93: 279
  • 11 Anastassiou AG, Yakali E. J. Chem. Soc., Chem. Commun. 1972; 92
  • 12 Mauksch M, Gogonea V, Jiao H, Schleyer P. vonR. Angew. Chem. Int. Ed. 1998; 37: 2395
  • 13 Johnson RP, Daoust KJ. J. Am. Chem. Soc. 1996; 118: 7381
  • 14 Martín-Santamaría S, Lavan B, Rzepa HS. J. Chem. Soc., Perkin Trans. 2 2000; 1415
  • 15 Havenith RW. A, van Lenthe JH, Jenneskens LW. Int. J. Quantum Chem. 2001; 85: 52
  • 16 Castro C, Isborn CM, Karney WL, Mauksch M, Schleyer P. vonR. Org. Lett. 2002; 4: 3431
  • 17 Wannere CS, Moran D, Allinger NL, Hess BA, Schaad LJ, Schleyer P. vonR. Org. Lett. 2003; 5: 2983
  • 18 Walba DM, Richards RM, Haltiwanger RC. J. Am. Chem. Soc. 1982; 104: 3219
  • 19 There are 2250 conceivable cis/trans isomers of [16]annulene of which the most stable Möbius one is number 137 in the list of the most stable isomers. See reference 9.
  • 20 Ajami D, Oeckler O, Simon A, Herges R. Nature 2003; 426: 819
  • 21 Rappaport SM, Rzepa HS. J. Am. Chem. Soc. 2008; 130: 7613
  • 22 Ajami D, Hess K, Köhler F, Näther C, Oeckler O, Simon A, Yamamoto C, Okamoto Y, Herges R. Chem. Eur. J. 2006; 12: 5434
  • 23 Castro C, Chen Z, Wannere CS, Jiao H, Karney WL, Mauksch M, Puchta R, van E Hommes NJ. R, von R Schleyer P. J. Am. Chem. Soc. 2005; 127: 2425
  • 24 Frisch HL, Wasserman E. J. Am. Chem. Soc. 1961; 83: 3789
  • 25 Walba DM. Tetrahedron 1985; 41: 3161
  • 26 Chambron J.-C, Mitchell DK. J. Chem. Educ. 1995; 72: 1059
  • 27 Heilbronner cleverly avoids the use of the term ‘topology’ as the author may have been aware that the connectivity of atoms in [n]annulenes is the same regardless of their molecular shape, but he may have unintentionally planted the seed of confusion, as he used the term ‘topological equivalent’ when illustrating the Möbius shape of molecular orbitals.
  • 28 Although racemization was not experimentally tested.
  • 29 Mauksch M, Tsogoeva SB. Chem. Eur. J. 2021; 27: 14660
  • 30 Zimmerman HE. Acc. Chem. Res. 1971; 4: 272
  • 31 Fan Y.-Y, Chen D, Huang Z.-A, Zhu J, Tung C.-H, Wu L.-Z, Cong H. Nat. Commun. 2018; 9: 3037
  • 32 Segawa Y, Watanabe T, Yamanoue K, Kuwayama M, Watanabe K, Pirillo J, Hijikata Y, Itami K. Nat. Synth. 2022; 1: 535
  • 33 Guo Q.-H, Stoddart JF. Chem 2022; 8: 2076
  • 34 Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat M.-A, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Angew. Chem. Int. Ed. 2022; 61: e202208591
  • 35 Fan W, Fukunaga TM, Wu S, Han Y, Zhou Q, Wang J, Li Z, Hou X, Wei H, Ni Y, Isobe H, Wu J. Nat. Synth. 2023; 2: 880
  • 36 Senthilkumar K, Kondratowicz M, Lis T, Chmielewski PJ, Cybińska J, Zafra JL, Casado J, Vives T, Crassous J, Favereau L, Stępień M. J. Am. Chem. Soc. 2019; 141: 7421
  • 37 Xu W, Yang X.-D, Fan X.-B, Wang X, Tung C.-H, Wu L.-Z, Cong H. Angew. Chem. Int. Ed. 2019; 58: 3943
  • 38 Sato K, Hasegawa M, Nojima Y, Hara N, Nishiuchi T, Imai Y, Mazaki Y. Chem. Eur. J. 2021; 27: 1323
  • 39 Nogami J, Nagashima Y, Miyamoto K, Muranaka A, Uchiyama M, Tanaka K. Chem. Sci. 2021; 12: 7858
  • 40 He J, Yu M.-H, Pang M, Fan Y.-Q, Lian Z, Wang Y, Wang W.-G, Liu Y, Jiang H. Chem. Eur. J. 2022; 28: e202103832
  • 41 He J, Yu M.-H, Lian Z, Fan Y.-Q, Guo S.-Z, Li X.-N, Wang Y, Wang W.-G, Cheng Z.-Y, Jiang H. Chem. Sci. 2023; 14: 4426
  • 42 Zhao W.-L, Li M, Lu H.-Y, Chen C.-F. Chem. Commun. 2019; 13793
  • 43 Dhbaibi K, Favereau L, Srebro-Hooper M, Quinton C, Vanthuyne N, Arrico L, Roisnel T, Jamoussi B, Poriel C, Cabanetos C, Autschbach J, Crassous J. Chem. Sci. 2020; 11: 567
  • 44 Dhbaibi K, Abella L, Meunier-Della-Gatta S, Roisnel T, Vanthuyne N, Jamoussi B, Pieters G, Racine B, Quesnel E, Autschbach J, Crassous J, Favereau L. Chem. Sci. 2021; 12: 5522
  • 45 Stępień M, Latos-Grażyński L, Sprutta N, Chwalisz P, Szterenberg L. Angew. Chem. Int. Ed. 2007; 46: 7869
  • 46 Stępień M, Sprutta N, Latos-Grażyński L. Angew. Chem. Int. Ed. 2011; 50: 4288
  • 47 Ghosh A, Chaudhary A, Srinivasan A, Suresh CH, Chandrashekar TK. Chem. Eur. J. 2016; 22: 3942
  • 48 Satrijo A, Meskers SC. J, Swager TM. J. Am. Chem. Soc. 2006; 128: 9030
  • 49 Nishikawa T, Nagata Y, Suginome M. ACS Macro Lett. 2017; 6: 431
  • 50 Gopal A, Hifsudheen M, Furumi S, Takeuchi M, Ajayaghosh A. Angew. Chem. Int. Ed. 2012; 51: 10505
  • 51 Kimoto T, Amako T, Tajima N, Kuroda R, Fujiki M, Imai Y. Asian J. Org. Chem. 2013; 404
  • 52 Sun Z.-B, Liu J.-K, Yuan D.-F, Zhao Z.-H, Zhu X.-Z, Liu D.-H, Peng Q, Zhao C.-H. Angew. Chem. Int. Ed. 2019; 58: 4840
  • 53 Niu D, Jiang Y, Ji L, Ouyang G, Liu M. Angew. Chem. Int. Ed. 2019; 58: 5946
  • 54 Gao Y, Ren C, Lin X, He T. Front. Chem. 2020; 8: 458
  • 55 Jiang P, Liu W, Li Y, Li B, Yang Y. New J. Chem. 2021; 45: 21941
  • 56 Deng Y, Wang M, Zhuang Y, Liu S, Huang W, Zhao Q. Light: Sci. Appl. 2021; 10: 76
  • 57 Kang S, Li Y, Bukharina D, Kim M, Lee H, Buxton ML, Han MJ, Nepal D, Bunning TJ, Tsukruk VV. Adv. Mater. 2021; 33: 2103329
  • 58 Li N, Sun M. ChemPhysChem 2023; 24: e202200846
  • 59 Liu H, Li N, Xia J, Sun M, Xia L. Chem. Phys. Lett. 2023; 826: 140643
  • 60 Nishigaki S, Shibata Y, Nakajima A, Okajima H, Masumoto Y, Osawa T, Muranaka A, Sugiyama H, Horikawa A, Uekusa H, Koshino H, Uchiyama M, Sakamoto A, Tanaka K. J. Am. Chem. Soc. 2019; 141: 14955
  • 61 Qiu Z.-L, Chen D, Deng Z, Chu K.-S, Tan Y.-Z, Zhu J. Sci. China Chem. 2021; 64: 1004
  • 62 Li K, Xu Z, Xu J, Weng T, Chen X, Sato S, Wu J, Sun Z. J. Am. Chem. Soc. 2021; 143: 20419
  • 63 Terabayashi T, Kayahara E, Zhang Y, Mizuhata Y, Tokitoh N, Nishinaga T, Kato T, Yamago S. Angew. Chem. Int. Ed. 2023; 62: e202214960
  • 64 Liu Z, Lu T. J. Phys. Chem. C 2020; 124: 7353
  • 65 Toriumi N, Muranaka A, Kayahara E, Yamago S, Uchiyama M. J. Am. Chem. Soc. 2015; 137: 82
  • 66 Kayahara E, Kouyama T, Kato T, Yamago S. J. Am. Chem. Soc. 2016; 138: 338