Synthesis
DOI: 10.1055/a-2276-6584
paper

Synthesis of Stilbenes by Cyanide/Base-Mediated Coupling of Benzylic Chlorides and Alcohols

Johanna Schichler
,
Robert Madsen
The project was supported by the Novo Nordisk Foundation (grant NNF20OC0065569).


Abstract

A straightforward procedure has been developed for the direct synthesis of stilbenes from benzylic chlorides and alcohols. The transformation employs a two-step one-pot protocol where the benzylic chloride is first subjected to a substitution with potassium cyanide in o-xylene. Without workup, the resulting arylacetonitrile is then reacted directly with the benzylic alcohol and potassium tert-butoxide to generate the stilbene framework. The condensation has been performed with a variety of commercially available benzylic chlorides and alcohols to afford substituted stilbenes as the pure E-isomers. A kinetic isotope effect of 5.2 has been measured for the overall transformation when comparing benzyl alcohol and α,α-d 2-benzyl alcohol. The release of cyanide during the final elimination to stilbene has been confirmed by a picrate test. Thus, the potassium tert-butoxide-mediated elimination of cyanide is believed to proceed by an E1cB mechanism where the deprotonation reaction constitutes the rate-determining step.

Supporting Information



Publication History

Received: 18 December 2023

Accepted after revision: 26 February 2024

Accepted Manuscript online:
26 February 2024

Article published online:
18 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Phytochemistry 2022; 197: 113128
    • 2a Kluska M, Jablonska J, Prukala W. Molecules 2023; 28: 4482
    • 2b Al-Khayri JM, Mascarenhas R, Harish HM, Gowda Y, Lakshmaiah VV, Nagella P, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AA.-S. Molecules 2023; 28: 3786
  • 3 Likhtenshtein G. Stilbenes–Application in Chemistry, Life Sciences and Materials Science. Wiley-VCH; Weinheim: 2009
  • 4 Khan ZA, Iqbal A, Shahzad SA. Mol. Divers. 2017; 21: 483
    • 5a Landge VG, Yadav V, Subaramanian M, Dangarh P, Balaraman E. Chem. Commun. 2019; 55: 6130
    • 5b Waiba S, Das A, Barman MK, Maji B. ACS Omega 2019; 4: 7082
  • 6 Zhang T, Wang R, Chen J, Liu L, Huang T, Li C, Tang Z, Chen T. Org. Biomol. Chem. 2022; 20: 4369
  • 7 D’Imperio N, Arkhypchuk AI, Ott S. Org. Biomol. Chem. 2020; 18: 6171
  • 8 Wang S, Lokesh N, Hioe J, Gschwind RM, König B. Chem. Sci. 2019; 10: 4580
  • 9 Jia X, Frye LI, Zhu W, Gu S, Gunnoe TB. J. Am. Chem. Soc. 2020; 142: 10534
  • 10 Chawla R, Jaiswal S, Dutta PK, Yadav LD. S. Org. Biomol. Chem. 2021; 19: 6487
  • 11 Meyer T, Xu J.-X, Rabeah J, Brückner A, Wu X.-F. ChemPhotoChem 2020; 4: 713
  • 12 Zheng Z, Trofymchuk OS, Kurogi T, Varela E, Mindiola DJ, Walsh PJ. Adv. Synth. Catal. 2020; 362: 659
  • 13 Liu X, Sotiropoulos J.-M, Taillefer M. Eur. J. Org. Chem. 2022; e202200631
  • 14 Midya SP, Subaramanian M, Babu R, Yadav V, Balaraman E. J. Org. Chem. 2021; 86: 7552
  • 15 Azizi K, Madsen R. Chem. Sci. 2020; 11: 7800
  • 16 Roy BC, Ansari IA, Samim SA, Kundu S. Chem. Asian J. 2019; 14: 2215
    • 17a Bera K, Mukherjee A. Chem. Asian J. 2023; 18: e202300157
    • 17b Genc S, Arslan B, Gülcemal D, Gülcemal S, Günnaz S. Org. Biomol. Chem. 2022; 20: 9753
    • 17c Singh A, Findlater M. Organometallics 2022; 41: 3145
    • 17d Li C, Bai L, Ge M.-T, Xia A.-B, Wang Y, Qiu Y.-R, Xu D.-Q. New J. Chem. 2021; 45: 15200
    • 17e Panda S, Saha R, Sethi S, Ghosh R, Bagh B. J. Org. Chem. 2020; 85: 15610
    • 17f Paudel K, Xu S, Ding K. J. Org. Chem. 2020; 85: 14980
    • 17g Bera S, Bera A, Banerjee D. Chem. Commun. 2020; 56: 6850
    • 17h Kong Y.-Y, Wang Z.-X. Asian J. Org. Chem. 2020; 9: 1192
    • 17i Borghs JC, Tran MA, Sklyaruk J, Rueping M, El-Sepelgy O. J. Org. Chem. 2019; 84: 7927
    • 17j Ma W, Cui S, Sun H, Tang W, Xue D, Li C, Fan J, Xiao J, Wang C. Chem. Eur. J. 2018; 24: 13118
    • 17k Jana A, Reddy CB, Maji B. ACS Catal. 2018; 8: 9226
    • 18a Putta RR, Chun S, Lee SB, Hong J, Choi SH, Oh D.-C, Hong S. J. Org. Chem. 2022; 87: 16378
    • 18b Paudel K, Xu S, Ding K. Org. Lett. 2021; 23: 5028
    • 18c Yadav V, Landge VG, Subaramanian M, Balaraman E. ACS Catal. 2020; 10: 947
    • 18d Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
  • 19 Tang S, Zhao H. RSC Adv. 2014; 4: 11251
  • 20 Egan SV, Yeoh HH, Bradbury JH. J. Sci. Food Agric. 1998; 76: 39
  • 21 In reference 13, a different mechanism is proposed where anion 16 performs a substitution reaction on benzyl formate (generated in situ from benzyl alcohol and DMF).
    • 22a Dambatta MB, Santos J, Bolt RR. A, Morrill LC. Tetrahedron 2020; 76: 131571
    • 22b Zhao G.-M, Sun W.-J, Zhang H.-L, Li D.-L, Yang X. J. Catal. 2019; 373: 126
    • 22c Xu Q, Chen J, Tian H, Yuan X, Li S, Zhou C, Liu J. Angew. Chem. Int. Ed. 2014; 53: 225
    • 22d Allen LJ, Crabtree RH. Green Chem. 2010; 12: 1362
    • 22e Ouali A, Majoral J.-P, Caminade A.-M, Taillefer M. ChemCatChem 2009; 1: 504
  • 23 In reference 14, hydrolysis of nitrile 2 into the corresponding amide is proposed followed by base-mediated elimination of formamide to give the stilbene framework. The experimental evidence includes a GC-MS chromatogram of the reaction mixture where a compound with a molecular mass of 43 can be identified. However, formamide has a molecular weight of 45 and it is therefore not clear whether this pathway is viable.
  • 24 Alam MS, Nam Y.-J, Lee D.-U. Eur. J. Med. Chem. 2013; 69: 790
  • 25 Marshall DR, Thomas PJ, Stirling CJ. M. J. Chem. Soc., Perkin Trans. 2 1977; 1898
  • 26 Bordwell FG. Acc. Chem. Res. 1988; 21: 456

    • For examples of E1cB eliminations of cyanides, see:
    • 27a Albeck M, Hoz S, Rappoport Z. J. Chem. Soc., Perkin Trans. 2 1972; 1248
    • 27b Rappoport Z, Shohamy E. J. Chem. Soc., Perkin Trans. 2 1971; 2060
    • 27c Lord E, Naan MP, Hall CD. J. Chem. Soc., Perkin Trans. 2 1971; 220
    • 28a Fontana G, Frenna V, Lamartina L, Natoli MC, Noto R. J. Phys. Org. Chem. 2002; 15: 108
    • 28b McLennan DJ, Wong RJ. J. Chem. Soc., Perkin Trans. 2 1974; 526
    • 29a Gandler JR, Storer JW, Ohlberg DA. A. J. Am. Chem. Soc. 1990; 112: 7756
    • 29b Thibblin A. J. Am. Chem. Soc. 1988; 110: 4582
    • 29c Gandler JR, Jencks WP. J. Am. Chem. Soc. 1982; 104: 1937
    • 29d Marshall DR, Thomas PJ, Stirling CJ. M. J. Chem. Soc., Perkin Trans. 2 1977; 1914
    • 30a Mosconi E, De Angelis F, Delpassi L, Tarantelli F, Alunni S. Eur. J. Org. Chem. 2009; 5501
    • 30b Alunni S, De Angelis F, Ottavi L, Papavasileiou M, Tarantelli F. J. Am. Chem. Soc. 2005; 127: 15151
  • 31 Khan D, Parveen I. Eur. J. Org. Chem. 2021; 4946
  • 32 Li K, Khan R, Zhang X, Gao Y, Zhou Y, Tan H, Chen J, Fan B. Chem. Commun. 2019; 55: 5663
  • 33 Bognar S, van Gemmeren M. Chem. Eur. J. 2023; 29: e202203512
  • 34 Zhang H, Guo L, Yang C, Xia W. Org. Biomol. Chem. 2023; 21: 5189
  • 35 Li F, Zhou X, Wang N. Adv. Synth. Catal. 2015; 357: 1405
  • 36 Li J, Liu Y, Tang W, Xue D, Li C, Xiao J. Chem. Eur. J. 2017; 23: 14445