Synlett
DOI: 10.1055/a-2330-0819
letter

Synthesis of Substituted Cyclooctenes through Cross-Coupling Reactions

Ryuichi Murata
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
,
Rakuto Yoshida
b   Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
,
b   Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
c   List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (ICReDD List-PF), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
,
Keisuke Asano
b   Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
› Author Affiliations
This work was supported financially by the Japanese Ministry of Education, Culture, Sports, Science and Technology (JP21H05076, JP23H01953, and JP23K26646). K.A. also acknowledges the Inoue Foundation for Science, the Mizuho Foundation for the Promotion of Sciences, the Japan Association for Chemical Innovation, the Tobe Maki Scholarship Foundation, the NOVARTIS Foundation (Japan) for the Promotion of Science, a Kurata Grants from the Hitachi Global Foundation, the Inamori Foundation, and the Society of Iodine Science. R.M. also acknowledges the Japan Society for the Promotion of Science for Young Scientists for a fellowship support (JP21J23149).


Abstract

Cross-coupling methods for the introduction of various substituents onto the olefin moiety of cyclooctenes were developed. A range of 1-substituted cis-cyclooctenes were synthesized. These protocols unlocked routes to previously inaccessible derivatives, permitting the syntheses of cis-cyclooctenes bearing various functional groups. Moreover, the method was applied to the synthesis of a 1,2-disubstituted trans-cyclooctene for the first time, which proved to be a significantly more active organocatalyst than the previously developed monosubstituted trans-cyclooctene.

Supporting Information



Publication History

Received: 18 April 2024

Accepted after revision: 18 May 2024

Accepted Manuscript online:
18 May 2024

Article published online:
03 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 The Chemistry of Double-Bonded Functional Groups, Vol. 2. Patai S. Wiley; Chichester: 1989

    • For selected reviews, see:
    • 2a Defieber C, Grützmacher H, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 4482
    • 2b Shintani R, Hayashi T. Aldrichimica Acta 2009; 42: 31
    • 2c Feng X, Du H. Asian J. Org. Chem. 2012; 1: 204
    • 2d Nagamoto M, Nishimura T. ACS Catal. 2017; 7: 833
  • 3 Blomquist AT, Liu LH, Bohrer JC. J. Am. Chem. Soc. 1952; 74: 3643

    • For reviews, see:
    • 4a Marshall JA. Acc. Chem. Res. 1980; 13: 213
    • 4b Nakazaki M, Yamamoto K, Naemura K. Top. Curr. Chem. 1984; 125: 1
    • 4c Schlögl K. Top. Curr. Chem. 1984; 125: 27
    • 4d Eliel EL, Wilen SH, Mander LN. Stereochemistry of Organic Compounds . Wiley; New York: 1993: 1172

      For isolation of optically active forms, see:
    • 5a Cope AC, Howell CF, Knowles A. J. Am. Chem. Soc. 1962; 84: 3190
    • 5b Cope AC, Ganellin CR, Johnson HW. Jr. J. Am. Chem. Soc. 1962; 84: 3191
    • 5c Cope AC, Ganellin CR, Johnson HW. Jr, Van Auken TV, Winkler HJ. S. J. Am. Chem. Soc. 1963; 85: 3276
    • 5d Cope AC, Mehta AS. J. Am. Chem. Soc. 1964; 86: 5626
    • 5e Cope AC, Banholzer K, Keller H, Pawson BA, Whang JJ, Winkler HJ. S. J. Am. Chem. Soc. 1965; 87: 3644
    • 5f Cope AC, Pawson BA. J. Am. Chem. Soc. 1965; 87: 3649

    • For selected examples of enantioselective syntheses, see:
    • 5g Inoue Y, Yokoyama T, Yamasaki N, Tai A. Nature 1989; 341: 225
    • 5h Tomooka K, Uehara K, Nishikawa R, Suzuki M, Igawa K. J. Am. Chem. Soc. 2010; 132: 9232
    • 5i Igawa K, Ichikawa N, Ano Y, Katanoda K, Ito M, Akiyama T, Tomooka K. J. Am. Chem. Soc. 2015; 137: 7294
    • 5j Miura T, Nakamuro T, Liang C.-J, Murakami M. J. Am. Chem. Soc. 2014; 136: 15905
    • 5k Okayama Y, Tsuji S, Toyomori Y, Mori A, Arae S, Wu W.-Y, Takahashi T, Ogasawara M. Angew. Chem. Int. Ed. 2015; 54: 4927

      For selected examples of the use as chiral synthetic intermediates, see:
    • 6a Tomooka K, Komine N, Fujiki D, Nakai T, Yanagitsuru S.-i. J. Am. Chem. Soc. 2005; 127: 12182
    • 6b Tomooka K, Suzuki M, Uehara K, Shimada M, Akiyama T. Synlett 2008; 2518
    • 6c Tomooka K, Akiyama T, Man P, Suzuki M. Tetrahedron Lett. 2008; 49: 6327
    • 6d Tomooka K, Iso C, Uehara K, Suzuki M, Nishikawa-Shimono R, Igawa K. Angew. Chem. Int. Ed. 2012; 51: 10355
    • 6e Larionov OV, Corey EJ. J. Am. Chem. Soc. 2008; 130: 2954
    • 6f Royzen M, Yap GP. A, Fox JM. J. Am. Chem. Soc. 2008; 130: 3760
    • 6g Hurlocker B, Hu C, Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 4295

      For selected examples, see:
    • 7a Thalhammer F, Wallfahrer U, Sauer J. Tetrahedron Lett. 1990; 31: 6851
    • 7b Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
    • 7c Devaraj NK, Weissleder R. Acc. Chem. Res. 2011; 44: 816
    • 7d Liu F, Liang Y, Houk KN. J. Am. Chem. Soc. 2014; 136: 11483
    • 7e Kamber DN, Liang Y, Blizzard RJ, Liu F, Mehl RA, Houk KN, Prescher JA. J. Am. Chem. Soc. 2015; 137: 8388
    • 8a Einaru S, Shitamichi K, Nagano T, Matsumoto A, Asano K, Matsubara S. Angew. Chem. Int. Ed. 2018; 57: 13863
    • 8b Nagano T, Einaru S, Shitamichi K, Asano K, Matsubara S. Eur. J. Org. Chem. 2020; 7131
  • 9 Murata R, Shitamichi K, Hiramatsu M, Matsubara S, Uraguchi D, Asano K. Chem. Eur. J. 2024; 30: e202303399
    • 10a Vedejs E, Snoble KA. J, Fuchs PL. J. Org. Chem. 1973; 38: 1178
    • 10b Shea KJ, Kim J.-S. J. Am. Chem. Soc. 1992; 114: 3044
  • 11 von R Schleyer P, Williams JE, Blanchard KR. J. Am. Chem. Soc. 1970; 92: 2377
    • 12a Metal Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2013
    • 12b Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
  • 13 Tamao K, Sumitani K, Kiso Y, Zembayashi M, Fujioka A, Kodama S.-i, Nakajima I, Minato A, Kumada M. Bull. Chem. Soc. Jpn. 1976; 49: 1958
  • 14 Negishi E. Acc. Chem. Res. 1982; 15: 340
  • 15 Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
  • 16 The synthesis of a monobrominated TCO failed, and its cross-coupling could not be investigated.
  • 17 All of 9 was converted to provide several products, although the byproducts were not identified. The stability of 10a was sufficient for its isolation.
  • 18 Nickel-Catalyzed Cross-Coupling; General Procedure 1-Bromocyclooctene (6) or 1,2-dibromocyclooctene (9; 0.50 mmol), the appropriate solvent (0.12 M), and NiCl2(dppe) (13 mg, 0.025 mmol) were added sequentially to a flame-dried 10-mL test tube with a rubber septum under an argon atmosphere. The mixture was cooled to the reaction temperature and stirred for 10 min, and then the organomagnesium reagent 11 (0.75 or 1.3 mmol) was added over 10 min. The mixture was gradually warmed and stirred for the appropriate time. The reaction was then quenched with sat. aq NH4Cl (2.0 mL). The resulting mixture was stirred at ambient temperature for 10 min, and then EtOAc (5.0 mL) and H2O (5.0 mL) were added. The aqueous layer was extracted with EtOAc (3 × 10 mL), and the combined organic layers were dried (Na2SO4) and concentrated in vacuo. Purification of the crude product by flash column chromatography (silica gel, hexane) afforded the corresponding product 2 or 10a. Further purification by preparative recycling chromatography was conducted if necessary. (E)-1-Benzylcyclooctene (2a) [CAS Reg. No. 1870003-16-9] Colorless oil; yield: 90 mg (90%); TLC: Rf = 0.75 (hexane). 1H NMR (600 MHz, CDCl3): δ = 7.29–7.26 (m, 3 H), 7.19 (m, 2 H), 5.38 (t, J = 8.1 Hz, 1 H), 3.30 (s, 2 H), 2.12–2.09 (m, 4 H), 1.49–1.39 (m, 8 H). 13C NMR (150 MHz, CDCl3): δ = 140.4, 140.1, 129.2, 128.1, 125.84, 125.82, 44.0, 30.0, 28.5, 28.4, 26.5, 26.4, 26.3. (E)-1,2-Dibenzylcyclooctene (10a) Colorless oil; yield: 1.3 mg (5%); TLC: Rf = 0.75 (hexane). IR (neat): 2922, 1466, 750, 727, 694 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.27–7.25 (m, 4 H), 7.19–7.18 (m, 6 H), 3.58 (s, 4 H), 2.19 (m, 4 H), 1.44–1.36 (m, 8 H). 13C NMR (150 MHz, CDCl3): δ = 140.9, 133.5, 128.9, 128.2, 125.8, 38.4, 30.6, 29.2, 26.6. HRMS (EI); m/z [M+] calcd for C22H26: 290.20290; found: 290.20318.