Subscribe to RSS
DOI: 10.1055/a-2557-7635
Carbamoyl Fluorides: A Platform to Interrogate Fluoride-Enabled Reactivity
This work was financially supported by the Natural Sciences and Engineering Council of Canada (NSERC) Discovery (RGPIN-2021-03630) and CREATE (575259-2023) Grant Programs.

Abstract
The strong and polar nature of C–F bonds impart organofluorine compounds with highly desirable properties, making them indispensable in pharmaceutical, agrochemical, and polymer research. While this bond strength makes the modification of organofluorine compounds challenging, it also creates opportunities for the development of innovative strategies for their functionalization. Carbamoyl fluorides represent an emerging class of fluorinated electrophiles, showcasing unique fluoride-enabled reactivity and serving as versatile building blocks for accessing valuable amides and heterocyclic compounds. This review highlights recent progress in the synthesis and reactivity of carbamoyl fluorides, including comparisons to their chlorinated counterparts where relevant.
1 Introduction
2 Synthesis and Simple Nucleophilic Substitution Reactions of Carbamoyl Fluorides
2.1 Direct Use of Difluorophosgene
2.2 Use of (Di)fluorophosgene Equivalents
2.2.1 From Isocyanates and Thioformamides
2.2.2 From Amines
2.3 Use of Difluorocarbene Sources
2.4 Use of CO2 and Deoxyfluorinating Reagents
2.5 Miscellaneous Methods
3 Reactivity of Carbamoyl Fluorides
3.1 Covalent Inhibition of Enzymes
3.2 Nucleophilic Substitution
3.3 Transition-Metal-Catalyzed C–F Bond Activation
3.4 Lewis Acid and Base Catalyzed Carbamoylation
4.0 Outlook and Conclusion
Key words
fluorine - carbamoyl fluoride - fluoride-enabled reactivity - carbamoylation - C–F bond functionalization - difluorocarbene - fluorophosgenePublication History
Received: 27 January 2025
Accepted after revision: 13 March 2025
Accepted Manuscript online:
13 March 2025
Article published online:
28 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Böhm H, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
- 2 Linclau B, Wang Z, Compain G, Paumelle V, Fontenelle CQ, Wells N, Weymouth-Wilson A. Angew. Chem. Int. Ed. 2016; 55: 674
- 3 Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 4 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 5 Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 6 Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
- 7 Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 8 McKnight EA, Cadwallader D, Le CM. Eur. J. Org. Chem. 2024; 27: e202300017
- 9 Chen W, Bakewell C, Crimmin M. Synthesis 2017; 49: 810
- 10 Schiesser S, Chepliaka H, Kollback J, Quennesson T, Czechtizky W, Cox RJ. J. Med. Chem. 2020; 63: 13076
- 11 Chinthakindi PK, Arvidsson PI. Eur. J. Org. Chem. 2018; 2018: 3648
- 12 Lou TS.-B, Willis MC. Nat. Rev. Chem. 2022; 6: 146
- 13 Das A, Chatani N. ACS Catal. 2021; 11: 12915
- 14 Ogiwara Y, Sakai N. Angew. Chem. Int. Ed. 2020; 59: 574
- 15 Tian T, Chen Q, Li Z, Nishihara Y. Synthesis 2022; 54: 3667
- 16 Liu L, Gu Y, Zhang C. Chem. Rec. 2023; 23: e202300071
- 17 Shrestha M, Wu X, Huang W, Qu J, Chen Y. Org. Chem. Front. 2021; 8: 4024
- 18 Pichette Drapeau M, Tlili A. Tetrahedron Lett. 2020; 61: 152539
- 19 Yang Y, Taponard A, Vantourout JC, Tlili A. ACS Org. Inorg. Au 2023; 3: 364
- 20 Jung Y, Lee Y, Shin K. Asian J. Org. Chem. 2024; 13: e202300661
- 21 Bieth J, Vratsanos SM, Wassermann NH, Cooper AG, Erlanger BF. Biochemistry 1973; 12: 3023
- 22 Venkatasubban KS, Johnson JL, Thomas JL, Fauq A, Cusack B, Rosenberry TL. Arch. Biochem. Biophys. 2018; 655: 67
- 23 Linhard M, Betz K. Ber. Deutsch Chem. Ges. 1940; 73: 177
- 24 Cuomo J, Olofson RA. J. Org. Chem. 1979; 44: 1016
- 25 Abe T, Hayashi E. J. Fluorine Chem. 1989; 45: 293
- 26 Švec P, Eisner A, Kolářová L, Weidlich T, Pejchal V, Růžička A. Tetrahedron Lett. 2008; 49: 6320
- 27 Li Y, Zhang F.-P, Wang R.-H, Qi S.-L, Luan Y.-X, Ye M. J. Am. Chem. Soc. 2020; 142: 19844
- 28 Fawcett FS, Tullock CW, Coffman DD. J. Am. Chem. Soc. 1962; 84: 4275
- 29 Haas A, Maciej T. Z. Anorg. Allg. Chem. 1985; 524: 33
- 30 Emeléus HJ, Wood JF. J. Chem. Soc. 1948; 2183
- 31 DesMarteau DD, Lu C. J. Fluorine Chem. 2011; 132: 1194
- 32 Seguin M, Adenis JC, Michaud C, Basselier JJ. J. Fluorine Chem. 1980; 15: 201
- 33 Christe KO, Pavlath AE. J. Org. Chem. 1965; 30: 1639
- 34 Cotarca L, Geller T, Répási J. Org. Process Res. Dev. 2017; 21: 1439
- 35 Zhou M, Ni C, Zeng Y, Hu J. J. Am. Chem. Soc. 2018; 140: 6801
- 36 Saiter J, Guérin T, Donnard M, Panossian A, Hanquet G, Leroux FR. Eur. J. Org. Chem. 2021; 2021: 3139
- 37 Jakobsson JE, Lu S, Telu S, Pike VW. Angew. Chem. Int. Ed. 2020; 59: 7256
- 38 Cho H, Jang S, Lee K, Cha D, Min S.-J. Org. Lett. 2023; 25: 8558
- 39 Hatch CE. J. Org. Chem. 1978; 43: 3953
- 40 Buckley GD, Piggott HA, Welch AJ. E. J. Chem. Soc. 1945; 864
- 41 Gontar AF, Bykhovskaya EG, Vinogradov AS, Knunyants IL. Russ. Chem. Bull. 1981; 30: 2188
- 42 Gontar’ AF, Glotov EN, Rybachev AA, Knunyants IL. Russ. Chem. Bull. 1984; 33: 1711
- 43 Gupta OD, Shreeve JM. J. Chem. Soc., Chem. Commun. 1984; 416
- 44 Sheppard WA. J. Am. Chem. Soc. 1965; 87: 4338
- 45 Quan H, Zhang N, Zhou X, Qian H, Sekiya A. J. Fluorine Chem. 2015; 176: 26
- 46 Zhang N, Zhou X, Quan H, Sekiya A. J. Fluorine Chem. 2015; 178: 208
- 47 Jakobsson JE, Telu S, Lu S, Jana S, Pike VW. Chem. Eur. J. 2021; 27: 10369
- 48 Scattolin T, Bouayad-Gervais S, Schoenebeck F. Nature 2019; 573: 102
- 49 Turksoy A, Scattolin T, Bouayad-Gervais S, Schoenebeck F. Chem. Eur. J. 2020; 26: 2183
- 50 Zivkovic FG, Wycich G, Liu L, Schoenebeck F. J. Am. Chem. Soc. 2024; 146: 1276
- 51 Hu C, Jiang L, Guo Z, Mumtaz Y, Liu J, Qin J, Chen Y, Lin Z, Yi W. Angew. Chem. Int. Ed. 2024; 63: e202319758
- 52 Song H.-X, Han Z.-Z, Zhang C.-P. Chem. Eur. J. 2019; 25: 10907
- 53 Taylor SL, Martin JC. J. Org. Chem. 1987; 52: 4147
- 54 Petzold D, Nitschke P, Brandl F, Scheidler V, Dick B, Gschwind RM, König B. Chem. Eur. J. 2019; 25: 361
- 55 Xin J, Deng X, Tang P. Org. Lett. 2022; 24: 881
- 56 Bonnefoy C, Chefdeville E, Panosian A, Hanquet G, Leroux FR, Toulgoat F, Billard T. Chem. Eur. J. 2021; 27: 15986
- 57 Bonnefoy C, Chefdeville E, Tourvieille C, Panossian A, Hanquet G, Leroux F, Toulgoat F, Billard T. Chem. Eur. J. 2022; 28: e202201589
- 58 Meden A, Knez D, Gobec S. ACS Omega 2025; 10: 6908
- 59 Ma X, Su J, Song Q. Acc. Chem. Res. 2023; 56: 592
- 60 Dilman AD, Levin VV. Acc. Chem. Res. 2018; 51: 1272
- 61 Li Y, Luo J, Jiang Y. Org. Chem. Front. 2023; 10: 5782
- 62 Baars H, Engel J, Mertens L, Meister D, Bolm C. Adv Synth. Catal. 2016; 358: 2293
- 63 Cadwallader D, Tiburcio TR, Cieszynski GA, Le CM. J. Org. Chem. 2022; 87: 11457
- 64 Yu J, Lin J.-H, Yu D, Du R, Xiao J.-C. Nat. Commun. 2019; 10: 5362
- 65 Zheng J, Cai J, Lin J.-H, Guo Y, Xiao J.-C. Chem. Commun. 2013; 49: 7513
- 66 Tang H, Shi X, Zhu X, Wang C, Feng C. Chin. J. Chem. 2023; 41: 2981
- 67 Onida K, Tlili A. Angew. Chem. Int. Ed. 2019; 58: 12545
- 68 Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Angew. Chem. Int. Ed. 2022; 61: e202204623
- 69 Song JW, Lim HN. Org. Lett. 2021; 23: 5394
- 70 Pulikkottil F, Burnett JS, Saiter J, Goodall CA. I, Claringbold B, Lam K. Org. Lett. 2024; 26: 6103
- 71 Shichijo K, Tanaka M, Kametani Y, Shiota Y, Fujitsuka M, Shimakoshi H. Chem. Eur. J. 2025; 31: e202403663
- 72 Metzger HP, Wilson IB. Biochemistry 1964; 3: 926
- 73 Champagne PA, Pomarole J, Thérien M.-È, Benhassine Y, Beaulieu S, Legault CY, Paquin J.-F. Org. Lett. 2013; 15: 2210
- 74 Durden JA. Jr, Kurtz AP. US 3956500A, 1976
- 75 Kurtz AP. Jr, D’Silva TD. J. US 4073930A, 1978
- 76 Durden JA. US 4071627A, 1978
- 77 Bouayad-Gervais S, Scattolin T, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 11908
- 78 Zivkovic FG. D.-T, Nielsen C, Schoenebeck F. Angew. Chem. Int. Ed. 2022; 61: e202213829
- 79 He F, Hou L, Wu X, Ding H, Qu J, Chen Y. CCS Chem 2022; 1
- 80 Nielsen CD.-T, Zivkovic FG, Schoenebeck F. J. Am. Chem. Soc. 2021; 143: 13029
- 81 Jabbarpoor M, LeBlanc J, Chen Z, Cadwallader D, Le CM. Chem. Commun. 2024; 60: 8700
- 82 Olofson RA, Cuomo J. Tetrahedron Lett. 1980; 21: 819
- 83 Effenberger F, Krebs A. J. Org. Chem. 1984; 49: 4687
- 84 Cadwallader D, Shevchuk D, Tiburcio TR, Le CM. Org. Lett. 2023; 25: 7369
- 85 McKnight EA, Arora R, Pradhan E, Fujisato YH, Ajayi AJ, Lautens M, Zeng T, Le CM. J. Am. Chem. Soc. 2023; 145: 11012
- 86 Yoshida T, Ohta M, Emmei T, Kodama T, Tobisu M. Angew. Chem. Int. Ed. 2023; 62: e202303657
- 87 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430