Subscribe to RSS
DOI: 10.1055/a-2627-8429
Toward Strained Pillar[4]arene Derivatives
Supported by: Initiative Scientific Research Program, Tsinghua University
Supported by: Tsinghua University
Supported by: Zhejiang University
Supported by: Dushi Program
Supported by: National Natural Science Foundation of China 22193020,22193022,22371251

Abstract
Over the past decade, pillar[n]arenes have emerged as prominent macrocyclic hosts in supramolecular chemistry owing to their straightforward synthesis, versatile functionalization, and rigid columnar cavities, attracting considerable research interest. However, conventional Lewis acid-catalyzed cyclizations exhibit an inherent preference for larger pillar[n]arenes (n ≥ 5) due to kinetic and thermodynamic factors associated with the dynamic oligomerization process, thereby precluding the synthesis of strained pillar[4]arene architectures. To overcome this challenge, we developed an innovative strain-engineering strategy—from low to high strain—based on a key thiophene-to-benzene transformation. This approach involves stepwise thiophene oxidation followed by an inverse electron-demand Diels–Alder (IEDDA) reaction, dynamically driven by SO₂ extrusion. High-resolution mass spectrometry confirmed the formation of tetrahydro-pillar[4]arene derivatives in the reaction mixture through their characteristic isotopic patterns. Our work establishes a viable route to challenging, strained pillar[4]arenes.
Keywords
Pillar[4]arene - Strained macrocyclic arenes - Dynamic-driven transformation - Inverse electron-demand Diels–Alder reactionPublication History
Received: 03 May 2025
Accepted after revision: 04 June 2025
Accepted Manuscript online:
04 June 2025
Article published online:
31 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Lehn J-M. J Incl Phenom 1988; 6: 351-396
- 2 Ogoshi T, Kakuta T, Yamagishi T-A. Angew Chem Int Ed 2019; 58: 2197-2206
- 3 Li J, Wang J, Li H, Song N, Wang D, Tang BZ. Chem Soc Rev 2020; 49: 1144-1172
- 4 Webber MJ, Langer R. Chem Soc Rev 2017; 46: 6600-6620
- 5 Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinović J. Chem Soc Rev 2016; 45: 24-39
- 6 Evans NH, Beer PD. Angew Chem Int Ed 2014; 53: 11716-11754
- 7 Stoddart JF. Angew Chem Int Ed 2017; 56: 11094-11125
- 8 Black SP, Sanders JKM, Stefankiewicz AR. Chem Soc Rev 2014; 43: 1861-1872
- 9 Lu W, Le X, Zhang J, Huang Y, Chen T. Chem Soc Rev 2017; 46: 1284-1294
- 10 Böhmer V. Angew Chem Int Ed Engl 1995; 34: 713-745
- 11 Diamond D, McKervey MA. Chem Soc Rev 1996; 25: 15-24
- 12 Gale PA, Sessler JL, Král V. Chem Commun 1998; 1-8
- 13 Kim SK, Sessler JL. Acc Chem Res 2014; 47: 2525-2536
- 14 Escobar L, Sun Q, Ballester P. Acc Chem Res 2023; 56: 500-513
- 15 Boinski T, Cieszkowski A, Rosa B, Szumna A. J Org Chem 2015; 80: 3488-3495
- 16 Han X-N, Han Y, Chen C-F. Chem Soc Rev 2023; 52: 3265-3298
- 17 Liu Z, Nalluri SKM, Stoddart JF. Chem Soc Rev 2017; 46: 2459-2478
- 18 Wu J-R, Yang Y-W. Chem Commun 2019; 55: 1533-1543
- 19 Xiong YPA. A New Deep-UV Photoresist Based on Photochemistry of 2-Aryl-4,5-Benzotropone. Part B. Syntheses of (1.1.1)Paracyclophane and Other Strained Aromatic Compounds, in Search for the Soccer Ball Carbon-60. Ph.D. Thesis Los Angeles: University of California; 1987
- 20 Miyahara Y, Inazu T, Yoshino T. Tetrahedron Lett 1983; 24: 5277-5280
- 21 Gribble GW, Nutaitis CF. Tetrahedron Lett 1985; 26: 6023-6026
- 22 Ogoshi T, Yamagishi T-A, Nakamoto Y. Chem Rev 2016; 116: 7937-8002
- 23 Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y. J Am Chem Soc 2008; 130: 5022-5023
- 24 Cragg PJ, Sharma K. Chem Soc Rev 2012; 41: 597-607
- 25 Jie K, Zhou Y, Li E, Huang F. Acc Chem Res 2018; 51: 2064-2072
- 26 Schneebeli ST, Cheng C, Hartlieb KJ. et al. Chem Eur J 2013; 19: 3860-3868
- 27 Yang W, Samanta K, Wan X. et al. Angew Chem Int Ed 2020; 59: 3994-3999
- 28 Chu Z, Liu F-Z, He Z, Yan K. ChemRxiv. 2023
- 29 Rajagopal SK, Dishi O, Bogoslavsky B, Gidron O. Chem Commun 2022; 58: 13652-13655
- 30 Thakellapalli H, Li S, Farajidizaji B. et al. Org Lett 2017; 19: 2674-2677
- 31 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J Am Chem Soc 2008; 130: 17646-17647
- 32 Kayahara E, Patel VK, Yamago S. J Am Chem Soc 2014; 136: 2284-2287
- 33 Inaba Y, Nomata Y, Ide Y. et al. J Am Chem Soc 2021; 143: 12355-12360
- 34 Watanabe K, Pati NN, Inokuma Y. Chem Sci 2024; 15: 6994-7009
- 35 Guo Q-H, Zhao L, Wang M-X. Angew Chem Int Ed 2015; 54: 8386-8389
- 36 Hart H, Takehira Y. J Org Chem 1982; 47: 4370-4372
- 37 Schwarzwalder GM, Scott DR, Vanderwal CD. Chem Eur J 2016; 22: 17953-17957
- 38 Li X, Liu L, Jia L. et al. Nat Commun 2025; 16: 467
- 39 Jung ME, Piizzi G. Chem Rev 2005; 105: 1735-1766
- 40 Bachrach SM. J Org Chem 2008; 73: 2466-2468