Subscribe to RSS

DOI: 10.1055/a-2638-4081
Recent Advances in Photoinduced Ketyl and Ketyl-Type Radical Generation from Aldehyde Derivatives
We thank the University of Bristol, Syngenta, and the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Technology Enhanced Chemical Synthesis (EP/S024107/1) for funding.

Abstract
Ketyl radical generation from carbonyls is an important strategy in organic synthesis that enables common electrophilic functional groups to be transformed into nucleophilic radicals. However, the large negative reduction potentials of carbonyls mean that direct conversion to ketyl radicals by single-electron reduction is challenging and requires strongly reducing conditions. As a result, alternative strategies to access these useful radical intermediates have been developed that circumvent traditional reductive pathways. For example, recent reports have demonstrated that aldehydes can be converted into various activated aldehyde derivatives that are readily transformed to ketyl radicals or protected ketyl (ketyl-type) radicals through mechanistically distinct pathways, including photoinduced single-electron oxidation and halogen atom transfer. Herein, we review the synthesis and applications of different aldehyde derivatives that have been developed to allow facile access to ketyl and ketyl-type radicals under mild visible-light photochemical conditions.
Keywords
Ketyl radicals - Ketyl-type radicals - Photocatalysis - Photoredox catalysis - Halogen atom transfer - Dual photoredox/nickel catalysisPublication History
Received: 01 May 2025
Accepted after revision: 16 June 2025
Accepted Manuscript online:
17 June 2025
Article published online:
30 July 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Chem Soc Rev 2021; 50: 5349
- 2 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
- 3a Beemelmanns C, Reissig H-U. Chem Soc Rev 2011; 40: 2199
- 3b Streuff J. Synthesis 2013; 45: 281
- 3c Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem Rev 2014; 114: 5959
- 3d Bongso A, Roswanda R, Syah YM. RSC Adv 2022; 12: 15885
- 5a Shono T, Mitani M. J Am Chem Soc 1971; 93: 5284
- 5b Shono T, Kashimura S, Mori Y, Hayashi T, Soejima T, Yamaguchi Y. J Org Chem 1989; 54: 6001
- 5c Hu P, Peters BK, Malapit CA, Vantourout JC, Wang P, Li J, Mele L, Echeverria P-G, Minteer SD, Baran PS. J Am Chem Soc 2020; 142: 20979
- 6a Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J Am Chem Soc 2013; 135: 17735
- 6b Petronijević FR, Nappi M, MacMillan DWC. J Am Chem Soc 2013; 135: 18323
- 6c Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew Chem, Int Ed 2015; 54: 8828
- 6d Fava E, Millet A, Nakajima M, Loescher S, Rueping M. Angew Chem, Int Ed 2016; 55: 6776
- 6e Qi L, Chen Y. Angew Chem, Int Ed 2016; 55: 13312
- 6f Lee KN, Lei Z, Ngai M-Y. J Am Chem Soc 2017; 139: 5003
- 6g Cao K, Tan SM, Lee R, Yang S, Jia H, Zhao X, Qiao B, Jiang Z. J Am Chem Soc 2019; 141: 5437
- 6h Ye C-X, Melcamu YY, Li H-H, Cheng J-T, Zhang T-T, Ruan Y-P, Zheng X, Lu X, Huang P-Q. Nat Commun 2018; 9: 410
- 6i Chi Z, Liao J-B, Cheng X, Ye Z, Yuan W, Lin Y-M, Gong L. J Am Chem Soc 2024; 146: 10857
- 7a Venditto NJ, Liang YS, El Mokadem RK, Nicewicz DA. J Am Chem Soc 2022; 144: 11888
- 7b Edgecomb JM, Alektiar SN, Cowper NGW, Sowin JA, Wickens ZK. J Am Chem Soc 2023; 145: 20169
- 8 Deng Y, Liu Q, Smith AB. J Am Chem Soc 2017; 139: 9487
- 9a Karimi-Nami R, Tellis JC, Molander GA. Org Lett 2016; 18: 2572
- 9b Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 10 Laha R, Patel TI, Moschitto MJ. Org Lett 2022; 24: 7394
- 11 Keum M, Kim D-K, Um H-S, Lee J, Lee C. Asian J Org Chem 2024; 13: e202300546
- 12a Wang L, Lear JM, Rafferty SM, Fosu SC, Nagib DA. Science 2018; 362: 225
- 12b Rafferty SM, Rutherford JE, Zhang L, Wang L, Nagib DA. J Am Chem Soc 2021; 143: 5622
- 13 Huang H-M, Bellotti P, Erchinger JE, Paulisch TO, Glorius F. J Am Chem Soc 2022; 144: 1899
- 14 Zhu C, Lee S-C, Chen H, Yue H, Rueping M. Angew Chem Int Ed 2022; 61: e202204212
- 15a Ji H, Lin D, Tai L, Li X, Shi Y, Han Q, Chen L-A. J Am Chem Soc 2022; 144: 23019
- 15b Li C, Cheng J, Wan X, Li J, Zu W, Xu Y, Huang Y, Huo H. J Am Chem Soc 2024; 146: 19909
- 15c Wen S, Bu J, Shen K. J Org Chem 2024; 89: 16134
- 16 Alam R, Molander GA. J Org Chem 2017; 82: 13728
- 17 Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew Chem Int Ed 2017; 56: 15073
- 18 Pasca F, Gelato Y, Andresini M, Romanazzi G, Degennaro L, Colella M, Luisi R. Chem Sci 2024; 15: 11337
- 19 Li Z, Tate JA, Noble A. J Am Chem Soc 2024; 146: 26616
- 20a Xia Q, Dong J, Song H, Wang Q. Chem Eur J 2019; 25: 2949
- 20b Capaldo L, Ravelli D, Fagnoni M. Chem Rev 2022; 122: 1875
- 21 Garwood JJA, Chen AD, Nagib DA. J Am Chem Soc 2024; 146: 28034
- 22 Gao L, Yang W, Wu Y. Song Z. In Organic Reactions, Vol. 102 . Evans PA. Ed John Wiley & Sons; 2020: 1-612
- 23 Molander GA, Wisniewski SR. J Am Chem Soc 2012; 134: 16856
- 24 Yuan M, Song Z, Badir SO, Molander GA, Gutierrez O. J Am Chem Soc 2020; 142: 7225
- 25 Ali R. ChemistrySelect 2023; 8: e202302903
- 26a Um H-S, Min J, An T, Choi J, Lee C. Org Chem Front 2018; 5: 2158
- 26b Kim D-K, Um H-S, Park H, Kim S, Choi J, Lee C. Chem Sci 2020; 11: 13071
- 27 Neuenschwander M, Bigler P, Christen K, Iseli R, Kyburz R, Mohle H. Helv Chim Acta 1978; 61: 2047
- 28a Chou T-S, Knochel P. J Org Chem 1990; 55: 4791
- 28b Giese B, Damm W, Dickhaut J, Wetterich F, Sun S, Curran DP. Tetrahedron Lett 1991; 32: 6097
- 28c Lee JY, Kim S. Bull Korean Chem Soc 2006; 27: 189
- 28d Quiclet-Sire B, Zard SZ. Molecules 2023; 28: 7561
- 29 Gatazka MR, Parikh SG, Rykaczewski KA, Schindler CS. Synthesis 2024; 56: 2513
- 30 Xing Z-X, Chen S-S, Huang H-M. Org Lett 2024; 26: 9949
- 31a Bellotti P, Huang H-M, Faber T, Laskar R, Glorius F. Chem Sci 2022; 13: 7855-7862
- 31b Huang H-M, Bellotti P, Kim S, Zhang X, Glorius F. Nat Synth 2022; 1: 464
- 32 Sun M-Q, Zhai S-J, Nie J, Cheng Y, Deng X, Ding G, Cahard D, Ma J-A, Zhang F-G. ChemCatChem 2025; 17: e202401622
- 33a Boyle BT, Dow NW, Kelly CB, Bryan MC, MacMillan DWC. Nature 2024; 631: 789
- 33b Ngo DT, Garwood JJA, Nagib DA. J Am Chem Soc 2024; 146: 24009
- 34 Solar S, Getoff N, Holcman J, Sehested K. J Phys Chem 1995; 99: 9425
- 35 Niu Y, Jin C, He X, Deng S, Zhou G, Liu S, Shen X. Angew Chem Int Ed 2025; 64: e202507789
For selected examples of photoredox-catalyzed ketyl radical formation from aromatic aldehydes and ketones, see:
Visible-light photocatalyzed carbonyl–olefin couplings of aliphatic ketones have also been reported using excited state organic radicals as strong reductants. However, under these highly reducing conditions, ketyl radical formation may not occur due to the preferential reduction of the olefin substrate over the ketone:
During the revision of this manuscript, Shen and co-workers reported the extension of α-hydroxy silane-derived ketyl-type radicals to perfluoroalkyl aldehydes, which were used in enantioselective dual photoredox/Ni-catalyzed cross-couplings with aryl halides: