RSS-Feed abonnieren
DOI: 10.1055/a-2673-4657
Synthetic Strategies for Benzimidazole-Based Heterocycles via Transition Metal–Catalyzed C–H Annulation
Gefördert durch: National Science and Technology Council 114-2113-M-A49-004
Funding Information National Science and Technology Council (114-2113-M-A49-004).

Abstract
The N–H-benzimidazole directing group (DG)–assisted transition metal (TM)–catalyzed C(sp2)–H activation and annulation reaction emerged as a powerful strategy for the synthesis of benzimidazole-based organic compounds, natural products and late-stage functionalization. This account highlights the recent advancements made in rhodium- and palladium-catalyzed C–H activation/annulation reactions on the benzimidazole core developed over the past decades. These strategies have facilitated the formation of C–C, C–N, C–O, and C–F bonds through Rh- and Pd-catalyzed cross-coupling annulation. A diverse array of diazo, alkynes, maleimides, olefins, ylides and aryl halides were used as the coupling partners to achieve C–H annulation. This review summarizes benzimidazole-based synthetic strategies, highlighting the substrate scope, key mechanistic insights and the nature of the coupling partners.
Publikationsverlauf
Eingereicht: 15. Mai 2025
Angenommen nach Revision: 13. Juli 2025
Artikel online veröffentlicht:
15. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Kim J, Movassaghi M. Chem Soc Rev 2009; 38: 3035
- 2 Chen D, Su SJ, Cao YJ. Mater Chem C 2014; 2: 9565
- 3 Heravi MM, Zadsirjan V. RSC Adv 2020; 10: 44247
- 4 Devendar P, Qu RY, Kang WM, He B, Yang GF. J Agric Food Chem 2018; 66: 8914
- 5 Song D, Ma S. Chem Med Chem 2016; 11: 646
- 6 Ebenezer O, Oyetunde-Joshua F, Omotoso OD, Shapi M. Results Chem 2023; 5: 100925
- 7 Banerjee S, Mukherjee S, Nath P. et al. Results Chem 2023; 6: 101013
- 8 Law CSW, Yeong KY. Chem Med Chem 2021; 16: 1861
- 9 Rida SM, El-Hawash SAM, Fahmy HTY, Hazzaa AA, El-Meligy MMM. Arch Pharm Res 2006; 29: 826
- 10 Deady LW, Rodemann T. Aust J Chem 2001; 54: 529
- 11 Sharma U, Kancherla R, Naveen T, Agasti S, Maiti D. Angew Chem Int Ed 2014; 53: 11895
- 12 Maiti D, Fors BP, Henderson JL, Nakamura Y, Buchwald SL. Chem Sci 2011; 2: 57
- 13 Agasti S, Dey A, Maiti D. Chem Commun 2017; 53: 6544
- 14 Das J, Ali W, Ghosh A. et al. Nat Chem 2023; 15: 1626
- 15 Yang K, Song M, Liu H, Ge H. Chem Sci 2020; 11: 12616
- 16 He J, Wasa M, Chan KSL, Shao Q, Yu J-Q. Chem Rev 2017; 117: 8754
- 17 Pedroni J, Cramer N. Chem Commun 2015; 51: 17647
- 18 Davison RT, Kuker EL, Dong VM. Acc Chem Res 2021; 54: 1236
- 19 Yang Z, Yu JT, Pan C. Org Biomol Chem 2021; 19: 8442
- 20 Kim DS, Park WJ, Jun CH. Chem Rev 2017; 117: 8977
- 21 Lewis JC, Bergman RG, Ellman JA. Acc Chem Res 2008; 41: 1013
- 22 Willis MC. Chem Rev 2010; 110: 725
- 23 Nishimura T. Chem Rec 2021; 21: 3532
- 24 Woźniak Ł, Tan JF, Nguyen QH. et al. Chem Rev 2020; 120: 10516
- 25 Pan S, Shibata T. ACS Catal 2013; 3: 704
- 26 Fernández DF, Mascareñas JL, López F. Chem Soc Rev 2020; 49: 7378
- 27 Arockiam PB, Bruneau C, Dixneuf PH. Chem Rev 2012; 112: 5879
- 28 Ackermann L. Acc Chem Res 2014; 47: 281
- 29 Arockiam PB, Bruneau C, Dixneuf PH. Chem Rev 2012; 112: 5879
- 30 Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew Chem Int Ed 2019; 58: 12803
- 31 Huang YT, Barve IJ, Huang YT, Dhole S, Chiu WJ, Sun CM. Org Biomol Chem 2022; 20: 6854
- 32 Huang YT, Barve IJ, Pawar GP, Sun CM. J Org Chem 2023; 88: 10916
- 33 Wu X, Sun S, Xu S, Cheng J. Adv Synth Catal 2018; 360: 1111
- 34 Sahoo S, Pal S. J Org Chem 2021; 86: 4081
- 35 Aslam M, Mohandoss S, Lee YR. Org Lett 2021; 23: 6206
- 36 Lopes AB, Wagner P, Gulea M, European J. Org Chem 2019; 2019: 1361
- 37 Reddy VP, Iwasaki T, Kambe N. Org Biomol Chem 2013; 11: 2249
- 38 Peng J, Shang G, Chen C, Miao Z, Li B. J Org Chem 2013; 78: 1242
- 39 Pereira KC, Porter AL, DeBoef B. Tetrahedron Lett 2014; 55: 1729
- 40 Zhao G, Chen C, Yue Y, Yu Y, Peng J. J Org Chem 2015; 80: 2827
- 41 Villar JM, Suárez J, Varela JA, Saá C. Org Lett 2017; 19: 1702
- 42 Lopes AB, Wagner P, Gulea M, European J. Org Chem 2019; 2019: 1361
- 43 Yang R, Wu X, Sun S, Yu JT, Cheng J. Synthesis-Stuttgart 2018; 50: 3487
- 44 Tang Z, Mai S, Zhou Y, Song Q. Org Chem Front 2018; 5: 2583
- 45 Wu X, Sun S, Xu S, Cheng J. Adv Synth Catal 2018; 360: 1111
- 46 Veltri L, Amuso R, Cuocci C, Vitale P, Gabriele B. J Org Chem 2019; 84: 8743
- 47 Ghosh K, Nishii Y, Miura M. ACS Catal 2019; 9: 11455
- 48 Hermann GN, Bolm C. ACS Catal 2017; 7: 4592
- 49 Hande AE, Prabhu KR. J Org Chem 2017; 82: 13405
- 50 Park Y, Kim Y, Chang S. Chem Rev 2017; 117: 9247
- 51 Xu L, Li T, Wang L, Cui X. J Org Chem 2019; 84: 560
- 52 Guo X, Hu J, Zhang M, Wang L. Asian J Org Chem 2019; 8: 417
- 53 Martínez-Yáñez N, Suárez J, Cajaraville A, Varela JA, Saá C. Org Lett 2019; 21: 1779
- 54 Chen X, Sun P, Mo B, Chen C, Peng J. J Org Chem 2021; 86: 352
- 55 Li XR, Chen SQ, Fan J. et al. Org Lett 2020; 22: 8808
- 56 Jambu S, Sivasakthikumaran R, Jeganmohan M. Org Lett 2019; 21: 1320
- 57 Manoharan R, Jeganmohan M. Asian J Org Chem 2019; 8: 1949
- 58 Deng C, Li C, Yao J, Jin Q, Miao M, Zhou H. Eur J Org Chem 2021; 2021: 3552
- 59 Aslam M, Mohandoss S, Lee YR. Org Lett 2021; 23: 6206
- 60 Huang YT, Barve IJ, Huang YT, Dhole S, Chiu WJ, Sun CM. Org Biomol Chem 2022; 20: 6854
- 61 Wang YY, Liu M, Dong L. Org Chem Front 2021; 8: 2487
- 62 Sahoo S, Pal S. J Org Chem 2021; 86: 4081
- 63 Dias GG, Paz ERS, Kadooca JY. et al. J Org Chem 2021; 86: 264
- 64 Siva Sankaram G, Sridhar B, Subba Reddy BV. Eur J Org Chem. 2022 2022
- 65 Zhong Z, Liang M, Zhang Z. et al. Org Lett 2022; 24: 4850
- 66 Wu Z, Lv G, Lin Z. et al. Green Synth Catal 2024; 5: 108
- 67 Upreti GC, Singh T, Khanna K, Singh A. J Org Chem 2023; 88: 4422
- 68 Huang YT, Barve IJ, Pawar GP, Sun CM. J Org Chem 2023; 88: 10916
- 69 Li H, Mei M, Wang D, Zhou L. Org Chem Front 2023; 10: 1544
- 70 Huang YT, Huang WW, Huang YT, Chen HR, Barve IJ, Sun CM. J Org Chem 2024; 89: 7513
- 71 Mai S, Luo Y, Huang X. et al. Chem Commun 2018; 54: 10240