Subscribe to RSS

DOI: 10.1055/a-2675-3988
Morpholine Amides: Classical but Underexplored Acylating Intermediates in Organic Synthesis
This work was supported by the Japan Science and Technology Agency (JST PRESTO, Grant No. JPMJPR2372)

Abstract
Morpholine amides are classical yet underexplored acylating agents in organic synthesis. Compared to other amides, such as Weinreb amides, morpholine amides offer distinct advantages such as high water solubility, economic accessibility, and operational stability. This review highlights recent advancements in the use of morpholine amides for the synthesis of ketones, aldehydes, and acylsilanes via selective mono-addition of organometallic or hydride reagents. Their applications in key steps of complex molecule synthesis, including natural product synthesis, Vilsmeier–Haack reactions, and polymer recycling processes, are also discussed. Particular attention is paid to the unique reactivity and chemoselectivity of morpholine amides that distinguish them from other amide derivatives, offering practical and scalable strategies in modern synthetic chemistry.
Keywords
Morpholine amide - Acylating agent - Mono-addition - Ketone synthesis - Weinreb alternative - Divergent building block - Hydride reductionPublication History
Received: 24 June 2025
Accepted after revision: 28 July 2025
Accepted Manuscript online:
03 August 2025
Article published online:
28 August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Dieter RK. Tetrahedron 1999; 55: 4177
- 1b Sato T, Chida N. Org Biomol Chem 2014; 12: 3147
- 1c Pace V, Holzer W, Olofsson B. Adv Synth Catal 2014; 356: 3697
- 2 Nahm S, Weinreb SM. Tetrahedron Lett 1981; 22: 3815
- 3a Mentzel M, Hoffmann HMR. J Prakt Chem 1997; 339: 517
- 3b Singh J, Satyamurthi N, Aidhen IS. J Prakt Chem 2000; 342: 340-347
- 3c Balasubramaniam S, Aidhen IS. Synthesis 2008; 23: 3707-3738
- 3d Senatore R, Ielo L, Monticelli S, Castoldi L, Pace V. Synthesis 2019; 51: 2792-2808
- 4 Mukaiyama T, Araki M, Takei H. J Am Chem Soc 1973; 95: 4763
- 5a Meyers AI, Comins DL. Tetrahedron Lett 1978; 19: 5179
- 5b Comins DL, Brown JD. Tetrahedron Lett 1984; 25: 3297
- 6 Katritzky AR, Le KNB, Mohapatra PP. Synthesis 2007; 3141 and references therein
- 7a Lanigan RM, Sheppard TD. Eur J Org Chem 2013; 7453
- 7b Wu X-F, Neumann H, Beller M. Chem Soc Rev 2011; 40: 4986
- 7c Bourboula A, Mountanea OG, Krasakis G. et al. Eur J Org Chem 2023; 26: e202300008 and references therein
- 8 Price comparison (as of June 2025, Sigma-Aldrich): N,O-dimethylhydroxylamine hydrochloride (CAS 6638-79-5) – 35,400 JPY/100 g; morpholine (CAS 110-91-8): 6,300 JPY/100 mL
- 9a Içten E, Maloney AJ, Beaver MG. et al. Org Process Res Dev 1861; 2020: 24
- 9b Içten E, Maloney AJ, Beaver MG. et al. Org Process Res Dev 1876; 2020: 24
- 9c Maloney AJ, Içten E, Capellades G. et al. Org Process Res Dev 1891; 2020: 24
- 10 Brown JD. Tetrahedron Asymmetry 1992; 3: 1551
- 11a Tasaka A, Tamura N, Matsushita Y. et al. Chem Pharm Bull 1993; 41: 1035
- 11b Tasaka A, Tamura N, Matsushita Y. et al. Chem Pharm Bull 1995; 43: 432
- 12 Martín R, Romea P, Tey C, Urpí F, Vilarrasa J. Synlett 1997; 1414
- 13 Gomtsyan A. Org Lett 2000; 2: 11
- 14 Sengupta S, Mondal S, Das D. Tetrahedron Lett 1999; 40: 4107
- 15 Jackson MM, Leverett C, Toczko JF, Roberts JC. J Org Chem 2002; 67: 5032
- 16 Concellón JM, Rodríguez-Solla H, Méjica C, Blanco EG. Org Lett 2007; 9: 2981
- 17 Kokotos CG, Baskakis C, Kokotos G. J Org Chem 2008; 73: 8623
- 18 Imamoto T, Takiyama N, Nakamura K, Hatajima T, Kamiya Y. J Am Chem Soc 1989; 111: 4392
- 19a Kurosu M, Marcin LR, Grinsteiner TJ, Kishi Y. J Am Chem Soc 1998; 120: 6627
- 19b Kurosu M, Kishi Y. Tetrahedron Lett 1998; 39: 4793
- 20 Badioli M, Ballini R, Bartolacci M, Bosica G, Torregiani E, Marcantoni E. J Org Chem 2002; 67: 8938
- 21 Dhoro F, Kristensen TE, Stockmann V, Yap GPA, Tius MA. J Am Chem Soc 2007; 129: 7256
- 22 Yadav JS, Venkatesh TM, Prasad AR. Synthesis 2010; 3: 431
- 23 Rye CE, Barker D. J Org Chem 2011; 76: 6636
- 24 Dickson BD, Dittrich N, Barker D. Tetrahedron Lett 2012; 53: 4464
- 25 Dittrich N, Jung E-K, Davidson SJ, Barker D. Tetrahedron 2016; 72: 4676
- 26 Wallace DM, Leung SH, Senge MO, Smith KM. J Org Chem 1993; 58: 7245
- 27 Bröring M. Synthesis 2000; 1291
- 28 Douat C, Heitz A, Martinez J, Fehrentz J-A. Tetrahedron Lett 2000; 41: 37
- 29 Kim SY, Kim YR, Kim HT, Jaladi AK, An DK. ChemistrySelect 2022; 7: e202202351
- 30a Kim YR, An DK. Bull Korean Chem Soc 2012; 33: 4194
- 30b Park JK, Shin WK, An DK. Bull Korean Chem Soc 2013; 34: 1592
- 30c Park JK, Shin WK, An DK. Tetrahedron Lett 2013; 54: 3199
- 30d Jeon AR, Kim ME, Park JK, Shin WK, An DK. Tetrahedron 2014; 70: 4420
- 31 Clark CT, Milgram BC, Scheidt KA. Org Lett 2004; 6: 3977
- 32 Wilhelmsen CA, Zhang X, Myhill JA, Morken JP. Angew Chem, Int Ed 2022; 61: e202116784
- 33 It should be noted that the reaction conditions and yields reported in the main text and the Supporting Information of this study differ; therefore, the data presented in this review are based on the Supporting Information
- 34 Ogiwara Y, Nomura K. ACS Org Inorg Au 2023; 3: 377
- 35 Tzaras D-I, Gorai M, Jacquemin T. et al. J Am Chem Soc 1867; 2025: 147
Representative reviews:
Reviews:
Selected reviews and papers: