Subscribe to RSS
DOI: 10.1055/a-2702-1118
Aggregation-Induced Asymmetric Synthesis (AIAS) Leading to More Selective Formation of 2,3-Dihydrobenzofuran Based on Various Sulfur Ylides
Authors
Supported by: Welch Foundation D-1361-20210327
Funding Information We would like to acknowledge the financial support from Robert A. Welch Foundation (D-1361-20210327, USA) and the National Natural Science Foundation of China (Nos. 22071102 and 91956110).

Abstract
The 2,3-dihydrobenzofuran scaffold represents a key structural motif in many bioactive natural products and pharmaceutical compounds. Herein, we report an efficient [4 + 1] annulation of chiral salicyl N-phosphonyl imine with sulfur ylides under aggregation-induced conditions to access functionalized trans-2,3-dihydrobenzofuran derivatives. Systematic modulation of the THF/EtOH cosolvent ratios enable tunable diastereoselectivity, with diastereomeric ratios improving progressively as solvent polarity increased. Aggregation-induced emission (AIE), aggregation-induced polarization (AIP), and dynamic light scattering (DLS) analyses confirm the formation and evolution of chiral aggregates, providing mechanistic insight into the origin of aggregation-induced synthesis. Overall, this work highlights the application of aggregation-induced asymmetric synthesis (AIAS) to enhance stereocontrol and expand the synthetic toolbox for accessing functionalized 2,3-dihydrobenzofuran scaffolds.
Keywords
Aggregation-induced synthesis - Aggregation-induced emission - Aggregation-induced polarization - Dynamic light scattering - DihydrobenzofuransPublication History
Received: 08 July 2025
Accepted after revision: 15 September 2025
Accepted Manuscript online:
22 September 2025
Article published online:
23 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Chen Z, Pitchakuntla M, Jia Y. Nat Prod Rep 2019; 36: 666
- 2 Tewtrakul S, Miyashiro H, Nakamura N. et al. Phytother Res 2003; 17: 232
- 3 Johnson G, Sunderwirth SG, Gibian H, Coulter AW, Gassner FX. Phytochemistry 1963; 2: 145
- 4 Apers S, Vlietinck A, Pieters L. Phytochem Rev 2003; 2: 201-217
- 5 Hayashi T, Thomson RH. Phytochemistry 1975; 14: 1085
- 6 Shishido K, Morimoto S, Shindo M. Heterocycles 2005; 66: 69
- 7 Macías FA, Varela RM, Torres A, Molinillo JMG. J Nat Prod 1999; 62: 1636
- 8 Chen J-R, Hu X-Q, Lu L-Q, Xiao W-J. Chem Rev 2015; 115: 5301
- 9 Lupattelli P, Laurita T, D’Orsi R, Chiummiento L, Funicello M. Synthesis 2020; 52: 1451
- 10 Cheng Y, Hu X-Q, Gao S, Lu L-Q, Chen J-R, Xiao W-J. Tetrahedron 2013; 69: 3810
- 11 He X, Xie M, Tang Q, Zuo Y, Li R, Shang Y. J Org Chem 2019; 84: 11623
- 12 Xu M, You M, Su Y. et al. Org Chem Front 2023; 10: 1521
- 13 Liang H, He X, Zhang Y. et al. Chem Commun 2020; 56: 11429
- 14 Wang G, Zhang M, Guan Y. et al. Research 2021; 2021: 9867915
- 15 Cai Y, Lv Y, Shu L, Jin Z, Chi YR, Li T. Research 2024; 7: 0293
- 16 Wang X, Yang W, Wu S. et al. Research 2025; 8: 0637
- 17 Zhang Y-F, Wang B, Chen Z. et al. Science 2025; 388: 283
- 18 Zhang H, Yang B, Yang Z, Lu H, Li G. J Org Chem 2016; 81: 7654
- 19 Yang B, Shen M, Ji X. et al. J Org Chem 2016; 81: 2488
- 20 Seifert CW, Paniagua A, White GA, Cai L, Li G, European J. Org Chem 2016; 2016: 1714
- 21 Zhang H, Yang Z, Zhao BN, Li G. J Org Chem 2018; 83: 644
- 22 An G, Seifert C, Li G. Org Biomol Chem 2015; 13: 1600
- 23 Wu J, An G, Lin S. et al. Chem Commun 2014; 50: 1259
- 24 Kaur P, Wever W, Pindi S. et al. Green Chem 2011; 13: 1288
- 25 Seifert CW, Pindi S, Li G. J Org Chem 2015; 80: 447
- 26 Rouh H, Tang Y, Zhang S. et al. RSC Adv 2021; 11: 39790
- 27 Rouh H, Tang Y, Zhang S. et al. Org Biomol Chem 2021; 19: 10319
- 28 Rouh H, Tang Y, Xu T. et al. Research 2022; 2022: 9865108
- 29 Yuan Q, Yan JX, Liu H. et al. Eur J Org Chem 2025; e202500426
- 30 Tang Y, Wang Y, Yuan Q. et al. Research 2023; 6: 0163
- 31 Hu M, Feng H-T, Yuan Y-X, Zheng Y-S, Tang BZ. Coord Chem Rev 2020; 416: 213329
- 32 Wu G, Liu Y, Yang Z. et al. Research 2021; 2021: 3565791
- 33 Jin S, Wang J-Y, Tang Y. et al. Front Chem 2022; 10: 860398
- 34 Zhang S, Xu Q, Yuan Q, Yan S, Zhang Y, Li G. Macromol Rapid Commun 2025; e2500090
- 35 Wu G, Liu Y, Yang Z. et al. Research 2019; 2019: 6717104
- 36 Zhang S, Yuan Q, Li G. RSC Adv 2024; 14: 13342
- 37 Tang Y, Zhang S, Xu T. et al. Front Chem 2022; 10: 962638
- 38 Tang Y, Yuan Q, Wang Y. et al. RSC Adv 2022; 12: 29813
- 39 Hu X, Zhao X, He B. et al. Research 2018; 2018: 3152870
- 40 Su X, Bao Z, Xie W. et al. Research 2023; 6: 0194
- 41 Wang B, Li C, He D. et al. Small 2024; 20: e2307309
- 42 Xia Q, Qin A, Tang BZ. J Nanopart Res 2023; 25
- 43 Zhang S, Yuan Q, Wang Y. et al. ChemistrySelect 2025; 10
- 44 Liu L, Yuan Z, Pan R. et al. Org Chem Front 2018; 5: 623