RSS-Feed abonnieren
DOI: 10.1055/a-2736-1999
Ethyl 3-Ethoxy-3-iminopropanoate Hydrochloride: A Versatile Precursor for Generating Next-Generation Energetic Materials
Autoren
Gefördert durch: Science and Engineering Research Board CRG/2023/000007

Abstract
The construction of nitrogen-rich heterocycles is a cornerstone in developing high-energy-density materials (HEDMs). Ethyl 3-ethoxy-3-iminopropanoate hydrochloride (EEIP·HCl) has proven to be a particularly powerful precursor, offering a reliable and versatile route to make several nitrogen-rich frameworks. Its ability to streamline ring formation has enabled the synthesis of high-performing energetic compounds with desirable densities, stabilities, and detonation properties. This article reviews EEIP-mediated cyclizations in energetic materials, underscoring its exceptional synthetic utility, broad structural scope, and growing role in advancing next-generation, environmentally sustainable explosives.
Keywords
Ethyl 3-ethoxy-3-iminopropanoate - Polynitro compounds - Triazoles - Oxadiazole - Energetic materialsData availability statement
No primary research results, software, or code have been included, and no new data were generated or analysed as part of this article.
Publikationsverlauf
Eingereicht: 05. Oktober 2025
Angenommen nach Revision: 31. Oktober 2025
Accepted Manuscript online:
31. Oktober 2025
Artikel online veröffentlicht:
27. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Klapötke TM. Chemistry of High-Energy Materials. Berlin/Boston: Walter de Gruyter GmbH; 2022
- 1b Yadav AK, Dharavath S. Chem Commun. 2025 Advance Article
- 2a Gao H, Shreeve JM. Chem Rev 2011; 111: 7377
- 2b Storm CB, Stine JR, Kramer JF. Chemistry and Physics of Energetic Material. Dordrecht: Kluwer Acad. Publ; 1990: 605
- 3 Yadav AK, Ghule VD, Dharavath S. ACS Appl Mater Interfaces 2022; 14: 49898
- 4 Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Chemosphere 2017; 184: 438
- 5 Tauqeer HM, Karczewska A, Lewińska LK. et al. Handbook Bioremed: Physiol, Mol Biotechnol Intervent 2021; 569
- 6 Alavi G, Chung M, Lichwa J, D’Alessio M, Ray C. J Hazard Mater 2011; 185: 1600
- 7 Sharma K, Sharma P, Sangwan P. Carbon Res 2023; 2: 1
- 8 Zhang W, Zhang J, Deng M, Qi X, Nie F, Zhang Q. Nat Commun 2017; 8: 1
- 9 Kukreja S, Yadav AK, Nehe S, Dharavath S. Org Lett 2024; 26: 10611
- 10 Larin AA, Dubasova EV, Ananyev IV, Pivkina AN, Gazieva GA, Fershtat LL. Org Lett 2025; 27: 10314
- 11 Yadav AK, Kukreja S, Nehe S, Ghule VD, Dharavath S. Inorg Chem 2024; 63: 15144
- 12 Meng F, Zhou R, Yuan X, Jiang S, Lu M, Xu Y. Org Lett 2025; 27: 10276
- 13 Zhang H, Zou Y, Hao X. et al. Cryst Growth Des 2025; 25: 7300
- 14 Yadav AK, Ghule VD, Dharavath SJ. Mater Chem A 2022; 10: 12702
- 15 Huang W, Tang Y, Imler GH, Parrish DA, Shreeve JM. J Am Chem Soc 2020; 142: 3652
- 16 Tang J, Xiong H, Zhang G, Tang Y, Yang H, Cheng G. Chem Commun 2022; 58: 11847
- 17 Cai J, Xie C, Xiong J, Zhang J, Yin P, Pang S. Chem Eng J 2022; 433: 134480
- 18 Gospodinov I, Singer J, Klapötke TM, Stierstorfer J. Z Anorg Allg Chem 2019; 645: 1247
- 19 Wang J, Lv R, Song S. et al. Cryst Growth Des 2024; 24: 4114
- 20 Ma Q, Gu H, Huang J. et al. New J Chem 2018; 42: 2376
- 21 Zhang J, Dharavath S, Mitchell LA, Parrish DA, Shreeve JM. J Am Chem Soc 2016; 138: 7500
- 22 Nehe S, Yadav AK, Ghule VD, Dharavath S. Chem Commun 2025; 61: 9047
- 23 Dong WS, Zhang C, Xu MQ. et al. Cryst Eng Commun 2024; 26: 5202
- 24 Tang Y, He C, Imler GH, Parrish DA, Shreeve JM. Chem Eur J 2017; 23: 16401
- 25 Khisamutdinov GK, Korolev VL, Parkhomenko TN. et al. Russ Chem Bull 1993; 42: 1700
- 26 Collins DA. J Chem Soc. 1963 1337.
- 27 Dharavath S, Shreeve JM. Prop Explos Pyrotech 2018; 43: 48
- 28 Dharavath S, Zhang J, Imler GH, Parrish DA, Shreeve JMJ. Mater Chem A 2017; 5: 4785
- 29 Aleksandrova NS, Semyakin SS, Anisimov AA, Struchkova MI, Sheremetev AB, Zelinsky ND. Russ Chem Bull Int Ed 2018; 67: 2035
- 30 Kumar P, Ghule VD, Dharavath S. Org Lett 2024; 26: 4788
- 31 Tian J, Xiong H, Lin Q, Cheng G, Yang H. New J Chem 2017; 41: 1918
- 32 Ma J, Tang J, Yang H. et al. ACS Appl Mater Interfaces 2019; 11: 26053
- 33 Ma J, Zhang G, Gu H. et al. New J Chem 2019; 43: 8370
- 34 Sheremetev AB, Aleksandrova NS, Semyakin SS, Suponitsky KY, Lempert DB. Chem Asian J 2019; 14: 4255
- 35 Tang Y, He C, Imler GH, Parrish DA, Shreeve JM. Dalton Trans 2019; 48: 7677
- 36 Chinnam AK, Singh J, Staples RJ, Shreeve JM. Chem Eng J 2022; 433: 133520
- 37 Yadav AK, Jujam M, Ghule VD, Dharavath S. Chem Commun 2023; 59: 4324
- 38 Yi P, Lin C, Yi X, He P, Wang T, Zhang J. ACS Appl Mater Interfaces 2024; 16: 23426
- 39 Chen YC, Yu Q, Liu N, Li T, Yi W. J Org Chem 2024; 89: 17475
- 40 Thaltiri V, Staples RJ, Burch JE, Bera A, Vennapusa SR, Shreeve JMJ. Mater Chem A 2025; 13: 9394
- 41 Xu MQ, Dong WS, Lu ZJ. et al. Energ Mater Front 2025; 6: 59
- 42 Wang X, Yang F, Cheng J. et al. J Mol Struct 2025; 1336: 142109
- 43 Sheremetev AB, Korolev VL, Potemkin AA. et al. Org Chem 2016; 5: 1388
- 44 Zhang X, Wang Y, Liu Y. et al. ACS Appl Mater Interfaces 2022; 14: 37975