Synthesis 2009(1): 160-164  
DOI: 10.1055/s-0028-1083277
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

The Thermal Amidation of Carboxylic Acids Revisited

Lukas J. Gooßen*, Dominik M. Ohlmann, Paul P. Lange
Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany
Fax: +49(631)3921; e-Mail: [email protected];
Weitere Informationen

Publikationsverlauf

Received 12 November 2008
Publikationsdatum:
12. Dezember 2008 (online)

Abstract

Factors affecting the thermal condensation of carboxylic acids with amines have been investigated, and an effective protocol for this waste-minimized, environmentally benign transformation has been identified. Fourteen examples demonstrate the applicability of this procedure to aliphatic, aromatic and heteroaromatic carboxylic acids and primary and secondary aliphatic as well as aromatic amines. The approach leads to the corresponding amides in good yields.

    References

  • 1 Smith MB. March J. Advanced Organic Chemistry   5th ed.:  Wiley; New York: 2001.  p.509 ; and references cited
  • 2a Larock RC. Comprehensive Organic Transformations   VCH; New York: 1989.  p.972 
  • 2b Klausner YS. Bodansky M. Synthesis  1972,  453 
  • 3 Ishihara K. Ohara S. Yamamoto H. J. Org. Chem.  1996,  61:  4196 
  • 4 Burnell-Curty C. Roskamp EJ. Tetrahedron Lett.  1993,  34:  5193 
  • 5 Wilson JD. Weingarten H. Can. J. Chem.  1970,  48:  983 
  • 6 Levin JI. Turos E. Weinreb SM. Synth. Commun.  1982,  12:  989 
  • 7 Thorsen M. Andersen TP. Pedersen U. Yde B. Lawesson S. Tetrahedron  1985,  41:  5633 
  • 8 Jászay ZM. Petnecházy I. Töke L. Synth. Commun.  1998,  28:  2761 
  • 9 Schmidt U. Dietsche M. Angew. Chem., Int. Ed. Engl.  1982,  21:  143 ; Angew. Chem. 1982, 94, 145
  • 10 Ueda M. Oikawa H. Kawaharasaki N. Imai Y. Bull. Chem. Soc. Jpn.  1983,  56:  2485 
  • 11 Takeda K. Sawada I. Suzuki A. Ogura H. Tetrahedron Lett.  1983,  24:  4451 
  • 12 Mitchell JA. Reid EE. J. Am. Chem. Soc.  1931,  53:  1879 
  • 13 Shepard EE. Porter HD. Noth JF. Simmans CK. J. Org. Chem.  1952,  17:  568 
  • 14 Webb CN. Org. Synth., Coll. Vol. I   John Wiley & Sons; London: 1941.  p.82 
  • 15 Roe ET. Scanlan JT. Swern D. J. Am. Chem. Soc.  1949,  71:  2215 
  • 16 Beckwith ALJ. In The Chemistry of Amides   Zabicky J. Wiley; New York: 1970.  p.105 
  • 17 Cossy J. Pale-Grosdemange C. Tetrahedron Lett.  1989,  30:  2771 
  • 18 Jursic BS. Zdravkovski Z. Synth. Commun.  1993,  23:  2761 
  • 19 Kaneshiro T. Vesonder RF. Peterson RE. Weisleder D. Bagby MO. J. Am. Oil Chem. Soc.  1994,  71:  491 
  • 20a Fong C. Wells D. Krodkiewska I. Hartley PG. Drummond CJ. Chem. Mater.  2006,  18:  594 
  • 20b Rosini G. Andreotti DG. D’Ambrosio P. Marotta E. Tinavelli A. Righi P. Synthesis  2007,  3051 
  • 21 Mod RR. Magne FC. Skau EL. J. Chem. Eng. Data  1962,  31 
  • 22 Bartra M. Vilarrasa J. J. Org. Chem.  1991,  56:  5132 
  • 23 Hanada S. Motoyama Y. Nagashima H. Tetrahedron Lett.  2006,  47:  6173 
  • 24 Lin S. Khanolkar AD. Fan P. Goutopoulos A. Qin C. Papahadjis D. Makriyannis A. J. Med. Chem.  1998,  41:  5353 
  • 25 Flerz-David HE. Meister H. Helv. Chim. Acta  1939,  22:  579 
  • 26 Katritzky AR. Cai C. Singh SK. J. Org. Chem.  2006,  71:  3375 
  • 27 Maki T. Ishihara K. Yamamoto H. Org. Lett.  2005,  7:  5043 
  • 28 Davidsen SK. May PD. Summers JB. J. Org. Chem.  1991,  56:  5482 
  • 29 Paruszewski R. Strupinska M. Stables JP. Swiader M. Czuczwar S. Kleinrok Z. Turski W. Chem. Pharm. Bull.  2001,  49:  629 
  • 30 Zanatta N. Faoro D. Silva SC. Bonacorso HG. Martins MAP. Tetrahedron Lett.  2004,  45:  5689 
  • 31 Heyde C. Zug I. Hartmann H. Eur. J. Org. Chem.  2000,  19:  3273 
  • 32 Chandrasekhar S. Sultana SS. Yaragorla SR. Reddy NR. Synthesis  2006,  839