Synthesis 2009(12): 2089-2100  
DOI: 10.1055/s-0029-1216826
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart ˙ New York

Tunable Phosphoramidite Ligands for Asymmetric Hydrovinylation: Ligands par excellence for Generation of All-Carbon Quaternary Centers

Craig R. Smith, Hwan Jung Lim, Aibin Zhang, T. V. RajanBabu*
Department of Chemistry, The Ohio State University, 100 W. 18th Ave, Columbus, OH 43210, USA
Fax: +1(614)2921685; e-Mail: rajanbabu.1@osu.edu;
Further Information

Publication History

Received 20 April 2009
Publication Date:
14 May 2009 (online)

Abstract

α-Alkylstyrenes undergo efficient hydrovinylation (addition of ethene) in the presence of a nickel catalyst prepared from [(allyl)NiBr]2, Na+[BAr4]- [Ar = 3,5-bis(trifluoromethyl)phenyl], and a phosphoramidite ligand giving products in excellent yields and enantioselectivities. In many cases phosphoramidites derived from achiral 2,2′-biphenol are almost as good as ligands derived from the more expensive enantiopure 1,1′-bi(2-naphthol)s. The hydrovinylation products, which carry two versatile latent functionalities, an aryl and a vinyl group, are potentially useful for the synthesis of several important natural products containing benzylic all-carbon quaternary centers.

    References

  • Recent monographs dealing with asymmetric catalysis:
  • 1a Ojima I. Catalytic Asymmetric Synthesis   Wiley-VCH; New York: 2000. 
  • 1b Comprehensive Asymmetric Catalysis   Vol. 1-3:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 1c For a recent thematic issue on enantioselective catalysis, see: Chem. Rev.  2003,  103:  2761-3400  
  • For leading references to highly catalytic asymmetric C-C bond-forming reactions using feedstock carbon sources, see
  • 2a Nozaki K. Hydrocarbonylation of Carbon-Carbon Double Bonds, In Comprehensive Asymmetric Catalysis   Vol. 1:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999.  p.381-413  
  • 2b Agbossou F. Carpentier J.-F. Mortreux A. Chem. Rev.  1995,  95:  2485 
  • 2c RajanBabu TV. Casalnuovo AL. Hydrocyanation of Carbon-Carbon Double Bonds, In Comprehensive Asymmetric Catalysis   Vol. 1:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999.  p.367-378  
  • For more recent results that have significant potential, see:
  • 2d Boyall D. Frantz DE. Carreira EM. Org. Lett.  2002,  4:  2605 ; and references cited therein
  • 2e Lu X.-B. Liang B. Zhang Y.-J. Tian Y.-Z. Wang Y.-M. Bai C.-X. Wang H. Zhang R. J. Am. Chem. Soc.  2004,  126:  3732 
  • 2f Taylor MS. Zalatan DN. Lerchner AM. Jacobsen EN. J. Am. Chem. Soc.  2005,  127:  1313 
  • 2g RajanBabu TV. Chem. Rev.  2003,  103:  2845 
  • 2h Ng SS. Ho CY. Schleicher KD. Jamison TF. Pure Appl. Chem.  2008,  80:  929 
  • 2i Davies HML. Manning JR. Nature (London)  2008,  451:  417 
  • 2j Klosin J. Landis CR. Acc. Chem. Res.  2007,  40:  1251 
  • 2k Bower JF. Kim IS. Patman RL. Krische MJ. Angew. Chem. Int. Ed.  2009,  48:  34 
  • For summaries and leading references to our work in this area, see:
  • 3a Saha B. Smith CR. RajanBabu TV. J. Am. Chem. Soc.  2008,  130:  9000 
  • 3b Zhang A. RajanBabu TV. Org. Lett.  2004,  6:  1515 
  • 3c RajanBabu TV. Casalnuovo AL. Ayers TA. Nomura N. Jin J. Park H. Nandi M. Curr. Org. Chem.  2003,  7:  301 
  • 3d Park H. Kumareswaran R. RajanBabu TV. Tetrahedron  2005,  61:  6352 
  • 3e RajanBabu TV. Nomura N. Jin J. Nandi M. Park H. Sun X. J. Org. Chem.  2003,  68:  8431 
  • 3f Park H. RajanBabu TV. J. Am. Chem. Soc.  2002,  124:  734 
  • 4a Feringa BL. Acc. Chem. Res.  2000,  33:  346 
  • 4b Arnold LA. Imbos R. Mandoli A. de Vries AHM. Naasz R. Feringa BL. Tetrahedron  2000,  56:  2865 
  • For representative examples of the use of finely tuned phosphoramidites from various research groups, see:
  • 4c Alexakis A. Polet D. Rosset S. March S. J. Org. Chem.  2004,  69:  5660 
  • 4d Bernsmann H. van den Berg M. Hoen R. Minnaard AJ. Mehler G. Reetz MT. De Vries JG. Feringa BL. J. Org. Chem.  2005,  70:  943 
  • 4e Streiff S. Welter C. Schelwies M. Lipowsky G. Miller N. Helmchen G. Chem. Commun.  2005,  2957 
  • 4f Leitner A. Shekhar S. Pouy MJ. Hartwig JF. J. Am. Chem. Soc.  2005,  127:  15506 
  • 4g Yu RT. Rovis T. J. Am. Chem. Soc.  2006,  128:  12370 
  • 4h Du H. Yuan W. Zhao B. Shi Y. J. Am. Chem. Soc.  2007,  129:  11688 
  • 4i Knöpfel TF. Aschwanden P. Ichikawa T. Watanabe T. Carreira EM. Angew. Chem. Int. Ed.  2004,  43:  5971 
  • 5 Zhang A. RajanBabu TV. J. Am. Chem. Soc.  2006,  128:  5620 
  • 6 Shi W.-J. Zhang Q. Xie J.-H. Zhu S.-F. Hou G.-H. Zhou Q.-L. J. Am. Chem. Soc.  2006,  128:  2780 
  • For other reports of phosphoramidite ligands in asymmetric hydrovinylation see:
  • 7a Franció G. Faraone F. Leitner W. J. Am. Chem. Soc.  2002,  124:  736 
  • 7b Kumareswaran R. Nandi N. RajanBabu TV. Org. Lett.  2003,  5:  4345 
  • 7c Zhang A. RajanBabu TV. J. Am. Chem. Soc.  2006,  128:  54 
  • For recent reviews, see:
  • 8a Jolly PW. Wilke G. In Applied Homogeneous Catalysis with Organometallic Compounds   Vol. 2:  Cornils B. Herrmann WA. VCH; New York: 1996.  p.1024-1048  
  • 8b RajanBabu TV. Synlett  2009,  853 
  • Hydrovinylation is one of the first metal-catalyzed asymmetric C-C bond-formation reactions reported, even though the selectivities were poor compared to today’s standards:
  • 9a Bogdanović B. Henc B. Meister B. Pauling H. Wilke G. Angew. Chem., Int. Ed. Engl.  1972,  11:  1023 
  • 9b Bogdanović B. Henc B. Lösler A. Meister B. Pauling H. Wilke G. Angew. Chem., Int. Ed. Engl.  1973,  12:  954 
  • 10 Nomura N. Jin J. Park H. RajanBabu TV. J. Am. Chem. Soc.  1998,  120:  459 
  • 11 Zhang A. RajanBabu TV. Org. Lett.  2004,  6:  1515 
  • 12 Zhang A. RajanBabu TV. Org. Lett.  2004,  6:  3159 
  • 13 Smith CR. RajanBabu TV. J. Org. Chem.  2009,  74:  3066 
  • For reviews, and history of the problem, see:
  • 14a Douglas CJ. Overman LE. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5363 ; and references cited therein
  • 14b Denissova I. Barriault L. Tetrahedron  2003,  59:  10105 
  • 14c Corey EJ. Guzman-Perez A. Angew. Chem. Int. Ed.  1998,  37:  388 
  • 14d Romo D. Meyers AI. Tetrahedron  1991,  47:  9503 
  • 14e Martin SF. Tetrahedron  1980,  36:  419 
  • See also:
  • 14f Quaternary Stereocenters   Christoffers J. Baro A. Wiley-VCH; Weinheim: 2005. 
  • For a recent synthesis and pertinent references, see:
  • 15a Taylor SK. Ivanovic M. Simons LJ. Davis MM. Tetrahedron: Asymmetry  2003,  14:  743 
  • See also:
  • 15b Takemoto T. Sodeoka M. Sasai H. Shibasaki M. J. Am. Chem. Soc.  1993,  115:  8477 ; corrections: J. Am. Chem. Soc. 1994, 116, 11207
  • 16a Moore RE. Pure Appl. Chem.  1982,  54:  1919 
  • 16b Vital P. Tanner D. Org. Bioorg. Chem.  2006,  4:  4292 
  • 16c Edwards DJ. Gerwick WH. J. Am. Chem. Soc.  2004,  126:  11432 
  • 16d Muratake H. Natsume M. Tetrahedron  1991,  47:  8535 
  • 16e Kozikowski AP. Shum PW. Basu A. Lazo S. J. Med. Chem.  1991,  34:  2420 
  • 16f Muratake H. Natsume M. Tetrahedron Lett.  1987,  28:  2265 
  • 17a Greig NH. Pei X.-F. Sonerant TT. Ingram DK. Brossi A. Med. Res. Rev.  1995,  15:  3 
  • 17b Sorbera LA. Castaner J. Drugs Future  2003,  28:  18 
  • 17c Shaw KTY. Utsuki T. Rogers J. Yu Q.-S. Sambamurti K. Brossi A. Ge Y.-W. Lahiri DK. Greig NH. Proc. Natl. Acad. Sci. U.S.A.  2001,  98:  7605 
  • 17d Yu Q.-S. Holloway HW. Flippen-Anderson LJ. Hoffman B. Brossi A. Greig NH. J. Med. Chem.  2001,  44:  4062 
  • 17e A leading reference to synthetic efforts, see: Huang A. Kodanko JJ. Overman LE. J. Am. Chem. Soc.  2004,  126:  14043 ; and references cited therein
  • 18 Van Veldhuizen JJ. Campbell JE. Giudici RE. Hoveyda AH. J. Am. Chem. Soc.  2005,  127:  6877 
  • 20 For a detailed procedure, see: Smith CR. Mans DJ. Zhang A. RajanBabu TV. Org. Synth.  2008,  85:  248 
  • 21a Smith CR. RajanBabu TV. Org. Lett.  2008,  10:  1657 
  • 21b Smith CR. Mans DJ. RajanBabu TV. Org. Synth.  2008,  85:  238 
  • Reviews:
  • 22a Anthoni U. Christophersen C. Nielsen PH. In Alkaloids: Chemical and Biological Perspectives   Vol. 13:  Pelletier SW. Wiley; New York: 1999.  p.163-236  
  • 22b Takano S. Ogasawara K. In The Alkaloids   Vol. 36:  Brossi A. Academic; San Diego: 1989.  p.225-251  
  • 24 We have since observed such isomerization reaction in a number of alk-1-enes, which undergo highly selective isomerization to isomeric alk-2-enes under conditions reminiscent of the hydrovinylation reaction under catalysis of Ni(II) or Pd(II): Lim HJ. Smith CR. RajanBabu TV. J. Org. Chem.  2009,  74:    in press
  • 26 Hulme AN. Henry SS. Meyers AI. J. Org. Chem.  1995,  60:  1265 
  • 27 Fadel A. Arzel P. Tetrahedron: Asymmetry  1997,  8:  371 
  • 28 Alexakis A. Rosset S. Allamand J. March S. Guillen F. Benhaim C. Synlett  2001,  1375 
  • 29 Reger DL. Little CA. Brown KJ. Lamba JJS. Krumper JR. Bergman RG. Irwin M. Fackler JP. Inorg. Synth.  2004,  34:  5 
  • 30 Synthetic Methods of Organometallic and Inorganic Chemistry   Vol. 1:  Herrmann WA. Salzer A. Georg Thieme Verlag; Stuttgart: 1996.  p.156 
  • 31 Kacprzynski MA. Hoveyda AH. J. Am. Chem. Soc.  2004,  126:  10676 
19

For the use of phosphoramidites derived from bis-phenols of spirobisindane in related asymmetric hydrovinylations, see reference 6.

23

Details of the synthesis of these compounds will be reported separately.

25

Biphenol-derived phosphoramidites have been used with excellent results in copper-catalyzed conjugate additions: see ref. 4c.