Synlett 2010(3): 368-373  
DOI: 10.1055/s-0029-1219183
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Thieme Chemistry Journal Awardees - Where Are They Now?Diastereoselective Tandem Iodocarbonate Cyclization of 1,5-Enynes

Choongmin Lim, M. Shesha Rao, Seunghoon Shin*
Department of Chemistry and Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
Fax: +82(2)22990762; e-Mail: sshin@hanyang.ac.kr;
Further Information

Publication History

Received 25 September 2009
Publication Date:
11 January 2010 (online)

Abstract

A diastereoselective, metal-free tandem iodocarbonatecyclization of 1,5-enyne, emulating the reactivity of gold catalysis is described. The normal selectivity of iodonium reagents for alkene is reversed favoring alkyne activation in the presence of aryl alkynes.

    References and Notes

  • For reviews, see:
  • 1a Tietze LF. Chem. Rev.  1996,  96:  115 
  • 1b Trost BM. Angew. Chem., Int. Ed. Engl.  1995,  34:  259 
  • 1c Malacria M. Chem. Rev.  1996,  96:  289 
  • 1d Burke MD. Schreiber SL. Angew. Chem. Int. Ed.  2004,  43:  46 
  • Selected examples:
  • 2a Koh JH. Gagné MR. Angew. Chem. Int. Ed.  2004,  116:  3459 
  • 2b Ishinashi H. Ishihara K. Yamamoto Y. J. Am. Chem. Soc.  2004,  126:  11122 
  • 2c For a review, see: Enders D. Grondal C. Huettl MRM. Angew. Chem. Int. Ed.  2007,  46:  1570 
  • For recent reviews, see:
  • 3a Jiménez-Núnez E. Echavarren AM. Chem. Rev.  2008,  108:  3326 
  • 3b Gorin DJ. Sherry BD. Toste FD. Chem. Rev.  2008,  108:  3351 
  • 3c Michelet V. Toullec PY. Genêt J.-P. Angew. Chem. Int. Ed.  2008,  47:  4268 
  • 3d Hashmi ASK. Chem. Rev.  2007,  107:  3180 
  • 3e Fürstner A. Davies PW. Angew. Chem. Int. Ed.  2007,  46:  3410 
  • For selected recent examples, see:
  • 4a Barluenga J. Vázquez-Villa H. Merino I. Ballesteros A. González JM. Chem. Eur. J.  2006,  12:  5790 
  • 4b Barluenga J. Vázquez-Villa H. Ballesteros A. González JM. J. Am. Chem. Soc.  2003,  125:  9028 
  • 4c Crone B. Kirsch SF. J. Org. Chem.  2007,  72:  5435 
  • 4d Ding Q. Chen Z. Yu X. Peng Y. Wu J. Tetrahedron Lett.  2009,  50:  340 
  • 4e Chen Z. Ding Q. Yu X. Wu J. Adv. Synth. Catal.  2009,  351:  1692 
  • For iodonium-induced cyclization of two tethered π-bonds:
  • 5a Schreiner PR. Prall M. Lutz V. Angew. Chem. Int. Ed.  2003,  42:  5757 
  • 5b Pandey G. Gadre SR. Acc. Chem. Res.  2004,  37:  201 
  • 5c Barluenga J. Romanelli GP. Alvarez-García LJ. Llorente I. González JM. García-Rodríguez E. García-Granda S. Angew. Chem. Int. Ed.  1998,  37:  3136 
  • 5d For a prototypical iodocarbonate cyclization of olefin, see: Duan JJ.-W. Smith AB. J. Org. Chem.  1993,  58:  3703 
  • 6a Kang J.-E. Lee E.-S. Park S.-I. Shin S. Tetrahedron Lett.  2005,  46:  7431 
  • 6b Kang J.-E. Shin S. Synlett  2006,  717 
  • 6c Lim C. Kang J.-E. Lee J.-E. Shin S. Org. Lett.  2007,  9:  3539 
  • 6d Lee E.-S. Yeom H.-S. Hwang J.-H. Shin S. Eur. J. Org. Chem.  2007,  3503 
  • 6e Robles-Machín R. Adrio J. Carretero JC. J. Org. Chem.  2006,  71:  5023 
  • 6f Hashmi ASK. Salathé R. Frey W. Synlett  2007,  1763 
  • 6g Buzas A. Gagosz F. Synlett  2006,  2727 
  • 6h Buzas A. Gagosz F. Org. Lett.  2006,  8:  515 
  • 6i Istrate F. Buzas A. Dias Jurberg I. Odabachian Y. Gagosz F. Org. Lett.  2008,  10:  925 
  • 6j Buzas A. Istrate F. Le Goff XF. Odabachian Y. Gagosz F. J. Organomet. Chem.  2009,  694:  515 
  • 6k Buzas A. Istrate FM. Gagosz F. Tetrahedron  2009,  65:  1889 
  • 6l Cheong JY. Bae HJ. Baskar B. Thangadurai D. Kim M.-J. Rhee YH. Bull. Korean Chem. Soc.  2009,  30:  1239 
  • For selected examples of gold-catalyzed 1,n-enyne cyclizations, see:
  • 7a Nieto-Oberhuber C. Munoz MP. Bunuel E. Nevado C. Cárdenas DJ. Echavarren AM. Angew. Chem. Int. Ed.  2004,  43:  2402 
  • 7b Luzung MR. Markham JP. Toste FD. J. Am. Chem. Soc.  2004,  126:  10858 
  • 7c Zhang L. Kozmin SA. J. Am. Chem. Soc.  2005,  127:  6962 
  • 7d Buzas AK. Istrate FM. Gagosz F. Angew. Chem. Int. Ed.  2007,  46:  1141 
  • 7e Kirsch SF. Binder JT. Duschek A. Haug TT. Liébert C. Menz H. Angew. Chem. Int. Ed.  2007,  46:  2310 
  • Similar reactivities in 1,6-enynes, see:
  • 7f Baskar B. Bae HJ. An SE. Cheong JY. Rhee YH. Duschek A. Kirsch SF. Org. Lett.  2008,  10:  2605 
  • 7g Bae HJ. Baskar B. An SE. Cheong JY. Thangadurai DT. Hwang I.-C. Rhee YH. Angew. Chem. Int. Ed.  2008,  47:  2263 
  • 7h Kirsch SF. Synthesis  2008,  3183 
  • 7i Bohringer S. Gagosz F. Adv. Synth. Catal.  2008,  350:  2617 
  • 7j Huang X. Zhang L. Org. Lett.  2007,  9:  4627 
  • 7k Karmakar S. Kim A. Oh CH. Synthesis  2009,  194 
  • 8a Kang J.-E. Kim H.-B. Lee J.-W. Shin S. Org. Lett.  2006,  8:  3537 
  • For an experimental comparison of the rate of halogenation on alkene and alkyne, see:
  • 8b Yates K. Schmid GH. Regulski TW. Garratt DG. Leung H.-W. McDonald R. J. Am. Chem. Soc.  1973,  95:  160 
  • For a recent review comparing metal-catalyzed and iodonium-triggered reactions, see:
  • 8c Yamamoto Y. Gridnev ID. Patil NT. Jin T. Chem. Commun.  2009,  5075 
  • 10 For similar studies on olefin carbonation, see: Bongini A. Cardillo G. Orena M. Porzi G. Sandri S. J. Org. Chem.  1982,  47:  4626 
  • For recent reviews on the theoretical aspects of electrophilic metal-alkyne complexes, see:
  • 13a Gorin DJ. Toste FD. Nature (London)  2007,  446:  395 
  • 13b Toste FD. Nature Chem.  2009,  1:  482 
  • 13c Fürstner A. Morency L. Angew. Chem. Int. Ed.  2008,  47:  5030 ; see also ref. 8c for the related 1,5-enyne cyclization trapping with carboxylic acid
  • 14a Okazaki T. Laali KK. J. Org. Chem.  2005,  70:  9139 
  • 14b Okazaki T. Laali KK. J. Org. Chem.  2006,  71:  9643 
9

Key spectral feature of monoalkene carbonation products 3 is as follows: Chemical shift (δ) of CH2I peak is ca. 3.5 ppm (¹H NMR), and 5-15 ppm (¹³C NMR) depending on the diastereomer. Proton and carbon correlation of these resonances is apparent in HSQC spectra of compounds 3.

11

The structural and stereochemical identity of the iodocarbonate products 4 were confirmed by the conversion of 4f/4g into 7f/7g (Scheme  [²] ), respectively, by the radical deiodination as below. Spectra of 7f/7g matched those of the respective products obtained in Au(I) catalysis.6c For 4o and 4q, relative stereochemistry was based on 1D-NOE spectra.

Scheme 2

12

The assignment of iodobromination products 5 was based on the following experiments: i) LRMS (CI) fragmentation data containing 79Br/Br isotope, ii) 1D-NOE spectra of 5g, iii) conversion of 5o into 4o′ (diastereomer of 4o) by Ag(I)-promoted carbonation, iv) conversion of 5o into 6o by E2 elimination (NaOMe), and v) the reaction of 2n with ICl into a mixture of 4n and iodochlorinated product 7n (Scheme  [³] ), corresponding to 5n.

Scheme 3

15

For a hydride addition on an alkyne: Strozier R. W., Caramella, P.; Houk, K. N. J. Am. Chem. Soc. 1979, 79, 1340; for addition of a weaker nucleophile (olefin in this case) having a later TS, preferential attack of alkyne should be even more pronounced.

16

However, in the formation of 4h, 4k, and 4n/5n, diastereomeric products having trans-1,2-vicinal relationship between the two methyl bearing centers were not observed. This observation indicates some degree of concertedness of C-C and C-O bond formations (or less likely, stereoelectronically driven nucleophilic trapping of the cationic center).

17

Typical Procedure for the IBr-Promoted Tandem Cyclization To a solution of 2f (57.3 mg, 0.200 mmol) in CH2Cl2 (1 mL) at -78 ˚C was added dropwise a solution of IBr (82.7 mg, 0.400 mmol) in CH2Cl2 (1 mL). The mixture was kept stirred at -78 ˚C for 20 min, then aq sat. Na2S2O3 (4 mL) was added at once. The mixture was allowed to warm to r.t. with stirring. Layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 × 4 mL). The combined organic layers were dried (MgSO4), evaporated, and the residue was purified by silica gel chromatography (EtOAc-hexane = 1:6) to yield 57.5 mg (81%) of 4f as a white solid (mp 154-156 ˚C).
Compound 4f: IR (neat): 2916, 1800, 1436, 1350, 1185, 1057 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.45-7.28 (m, 3 H), 7.28-7.15 (m, 2 H), 4.60 (t, J = 3.0 Hz, 1 H), 3.32 (dd, J = 2.2, 16.9 Hz, 1 H), 2.97 (dd, J = 2.6, 17.0 Hz, 1 H), 2.93 (d, J = 15.8 Hz, 1 H), 2.52 (d, J = 15.8 Hz, 1 H), 1.60 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): d = 154.5, 144.5, 144.0, 129.1, 128.6, 128.2, 88.7, 83.6, 82.0, 44.7, 42.7, 26.7. HRMS: m/z calcd for C14H13INaO3 [M + Na]+: 378.9807; found: 378.9809.
Compound 4g: white solid; mp 114-115 ˚C. IR (neat): 2921, 1790, 1506, 1246, 1052 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.18 (d, J = 8.8 Hz, 2 H), 6.89 (d, J = 8.5 Hz, 2 H), 4.58 (t, J = 2.9 Hz, 1 H), 3.82 (s, 3 H), 3.31 (dd, J = 2.2, 16.9 Hz, 1 H), 2.96 (dd, J = 2.5, 16.9 Hz, 1 H), 2.92 (d, J = 15.8 Hz, 1 H), 2.51 (d, J = 15.8 Hz, 1 H), 1.60 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 159.8, 154.5, 144.0, 136.3, 129.6, 114.3, 88.1, 83.7, 82.0, 55.9, 44.8, 42.9, 26.7. Anal Calcd for C15H15IO4: C, 46.65; H, 3.92. Found: C, 45.60; H, 4.10. LRMS (CI+): m/z calcd for C15H16IO4 [M+ + H]: 387; found: 387 (100) [M+ + H], 343 (6) [M+ + H - CO2], 325 (67) [M+ + H - CO2 - H2O].
Compound 5g: colorless liquid. IR (neat): 2968, 2926, 1738, 1506, 1279, 1246, 1156, 1085 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.10 (d, J = 8.4 Hz, 2 H), 6.89 (d, J = 8.8 Hz, 2 H), 5.00 (t, J = 4.7 Hz, 1 H), 3.82 (s, 3 H), 3.44 (d br, J = 18.7 Hz, 1 H), 3.07 (d of ABq, J = 7.9 Hz, 1 H), 3.00 (d of ABq, J = 7.9 Hz, 1 H), 2.94 (d br, J = 18.7 Hz, 1 H), 1.81 (s, 3 H), 1.52 (s, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 159.6, 153.3, 141.2, 137.9, 129.7, 114.3, 93.1, 83.6, 61.4, 55.9, 47.7, 45.7, 28.8, 28.4. LRMS (CI+): m/z calcd for C19H25 79BrIO4 [M+ + H]: 523; found: 523 (24) [M+ + H, 79Br], 525 (24) [M+ + H, Br], 467 (10) [M+ + H - C4H8, 79Br], 469 (8) [M+ + H - C4H8, Br], 443 (6) [M+ - 79Br], 405 (37) [M+ + H - C4H8 - CO2 - H2O, 79Br], 407 (36) [M+ + H - C4H8 - CO2 - H2O, Br].
Compound 4n: white solid; mp 105-107 ˚C. IR (NaCl): 2916, 2850, 1790, 1601, 1511, 1350, 1246, 1057 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.12 (d, J = 8.8 Hz, 2 H), 6.90 (d, J = 8.4 Hz, 2 H), 4.55 (t, J = 3.7 Hz, 1 H), 3.82 (s, 3 H), 3.24-3.16 (m, 2 H), 2.95 (q, J = 7.3 Hz, 1 H), 1.58 (s, 3 H), 1.07 (d, J = 7.3 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 159.8, 154.6, 149.6, 136.7, 130.0, 129.8, 114.4, 89.0, 86.0, 81.9, 55.9, 46.3, 43.8, 25.0, 13.4. ES-HRMS: m/z calcd for C16H17IO4Na [M + Na]+: 423.0069; found: 423.0068.
Compound 5n: pale yellow liquid. IR (NaCl): 2916, 2930, 1743, 1601, 1506, 1365, 1279, 1242, 1156 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.16 (d, J = 8.4 Hz, 2 H), 6.91 (d, J = 8.8 Hz, 2 H), 5.49 (dd, J = 3.3, 7.7 Hz, 1 H), 4.03 (q, J = 6.9 Hz, 1 H), 3.82 (s, 3 H), 3.37 (dd, J = 7.7, 17.3 Hz, 1 H), 2.77 (dd, J = 3.3, 17.2 Hz, 1 H), 1.70 (d, J = 7.0 Hz, 3 H), 1.51 (s, 9 H), 1.14 (s, 3 H). ¹³C NMR (100 MHz, CDCl3):
δ = 159.9, 153.6, 152.8, 131.2, 129.5, 114.3, 95.2, 83.1, 78.3, 60.4, 57.4, 55.8, 50.7, 28.4, 21.8, 18.7. LRMS (CI+): m/z calcd for C20H26 79BrIO4 [M+ + H]: 537; found: 537 (22) [M+ + H, 79Br], 539 (22) [M+ + H, Br], 481 (26) [M+ + H - C4H8, 79Br], 483 (24) [M+ + H - C4H8, Br], 419 (52) [M+ - BocO, 79Br], 421 (51) [M+ - BocO, Br], 401 (100) [M+ - Br - C4H8, 79Br].