Synthesis 2012(1): 42-50  
DOI: 10.1055/s-0031-1289622
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

tert-Butoxide-Assisted Amidation of Esters under Green Conditions

Bo Ram Kima, Hyung-Geun Leea, Seung-Beom Kanga, Gi Hyeon Sunga, Jeum-Jong Kimb, Jong Keun Park*c, Sang-Gyeong Leea, Yong-Jin Yoon*a
a Department of Chemistry & Research Institute of Natural Sciences, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701, Korea
Fax: +82(55)7721489; e-Mail: [email protected];
b Advanced Solar Technology Research Department, ETRI, Daejeon 305-700, Korea
c Department of Chemistry Education and Research Institute of Natural Science, Educational Research Institute Teachers College, Gyeongsang National University, Jinju 660-701, Korea
Fax: +82(55)7722229; e-Mail: [email protected];
Further Information

Publication History

Received 4 August 2011
Publication Date:
24 November 2011 (online)

Abstract

Efficient and green amidation reactions are of great importance. In this work, we demonstrate the tert-butoxide-assisted amidation of esters with amines under ambient conditions. Aliphatic and/or aromatic esters were converted into the corresponding amides under mild conditions in good to excellent yields. It is noteworthy that the reaction is highly efficient, rapid, versatile, green and economical, and will find great practical application in organic synthesis, biochemistry, and industrial chemistry.

    References

  • 1a Rimola A. Tosoni S. Sodupe M. Ugliengo P. Chem. Phys. Lett.  2005,  408:  295 
  • 1b Comerford JW. Clark JH. Macquarrie DJ. Breeden SW. Chem. Commun.  2009,  2562 
  • 2 Albericio F. Curr. Opin. Chem. Biol.  2004,  8:  211 
  • 3a Greene TW. Wuts PGM. Protective Groups in Organic Synthesis   Wiley; New York: 1999.  p.494 
  • 3b Mulzer J. In Comprehensive Organic Synthesis   Vol. 6:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.322 
  • 4 Ishihara K. Yano T. Org. Lett.  2004,  6:  1983 
  • 5 Vogel A. Practical Organic Chemistry   Longman Scientific & Technical and Wiley; New York: 1989.  p.708 
  • For selected examples, see:
  • 6a Valeur E. Bradley M. Chem. Soc. Rev.  2009,  38:  606 
  • 6b Kang SB. Yim HS. Won JE. Kim MJ. Kim JJ. Kim HK. Lee SG. Yoon YJ. Bull. Korean Chem. Soc.  2008,  29:  1025 
  • 6c Kang YJ. Chung HA. Kim JJ. Yoon YJ. Synthesis  2002,  733 
  • 6d Wakasugi K. Nakamura A. Tanabe Y. Tetrahedron Lett.  2001,  42:  7427 
  • 6e Katrizky AR. He H.-Y. Suzuki K. J. Org. Chem.  2000,  65:  8210 
  • 6f Kondo K. Sekimoto E. Nakao J. Murakami Y. Tetrahedron  2000,  56:  5843 
  • 6g Yasuhara T. Nagaoka Y. Tomioka K. J. Chem. Soc., Perkin Trans. 1  1999,  2233 
  • 6h Blagbrough IS. Geall AJ. Tetrahedron Lett.  1998,  39:  439 
  • 6i Kartrizky AR. Yang B. Semenzin D. J. Org. Chem.  1997,  62:  726 
  • 6j Kartrizky AR. Chang HX. Synthesis  1995,  503 
  • 6k Murahashi S.-I. Naota T. Synthesis  1993,  433 
  • 6l Akikusa N. Mitsui K. Sakamoto T. Kikugawa Y. Synthesis  1992,  1058 
  • 6m Kikukawa Y. Mitsui K. Sakamoto T. Kawase M. Tamiya H. Tetrahedron Lett.  1990,  31:  243 
  • 7a Smith MB. March J. March’s Advanced Organic Chemistry   5th ed.:  Wiley; New York: 2001.  p.506 
  • 7b Urben PG. Bretherick’s Handbook of Reactive Chemical Harzards   Butterworth-Heinemann; Oxford: 1999.  p.746 
  • 8 Constable DJC. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang TY. Green Chem.  2007,  9:  411 
  • 9 Smith MB. March J. March’s Advanced Organic Chemistry   5th ed.:  Wiley; New York: 2001.  p.510 
  • 10 Pryor WA. Gu JT. Church DF. J. Org. Chem.  1985,  50:  185 
  • 11 Akiyama S. Tajima K. Nakatsuji S. Nakashima K. Abiru K. Watanabe M. Bull. Chem. Soc. Jpn.  1995,  68:  2043 
  • 12 Caldwell SE. Porter NA. J. Am. Chem. Soc.  1995,  117:  8676 
  • 13 Nakanishi W. Ikeda Y. Iwamura H. J. Org. Chem.  1982,  47:  2275 
  • 14 Staab HA. Rohr W. Graf F. Chem. Ber.  1965,  98:  1122 
  • 15 Hamada Y. Mizuno A. Ohno T. Shioiri T. Chem. Pharm. Bull.  1984,  32:  3683 
  • 16 Icli S. Kandil KA. Thankachan C. Tidwell TT. Can. J. Chem.  1975,  53:  979 
  • 17 Frish MJ. Rrucks GW. Head-Gordon MH. Gill PMW. Wong MW. Foresman JB. Jhonson BG. Schlegel HB. Robb MA. Replogle ES. Gomperts R. Andres JL. Raghavachari K. Binkley JS. Gonzalez C. Martin RL. Fox DJ. Defrees DJ. Baker J. Stewart JJP. Pople JA. Gaussian 03   Gaussian Inc.; Pittsburgh: 2003. 
  • 18 Saito Y. Ouchi H. Takahata H. Tetrahedron  2008,  64:  11129 
  • 19 Voronkov MG. Tsyrendorzhieva IP. Parkhlin VI. Russ. J. Org. Chem.  2008,  44:  481 
  • 20 Heine HW. Zibuck R. Vanden H. William JA. J. Am. Chem. Soc.  1982,  104:  3691 
  • 21 Singh H. Aggarwal SK. Malhotra N. Synthesis  1983,  791 
  • 22 Robert-Piessard S. Le Baut G. Courant J. Brion JD. Sparfel L. Bouhayat S. Petit JY. Sanchez RY. Juge M. Eur. J. Med. Chem.  ,  1990, 25:  9 
  • 23 Gajda T. Zweirzak A. Synthesis  1981,  1005 
  • 24 Boyer JH. Hamer J. J. Am. Chem. Soc.  1955,  77:  951 
  • 25 Cromwell NH. Creger PL. Cook KE. J. Am. Chem. Soc.  1956,  78:  4412 
  • 26 Alliger G. Smith GEP. Carr EL. Stevens HP.
    J. Org. Chem.  1949,  14:  962 
  • 27 Kumar DK. Jose DA. Dastidar P. Das A. Langmuir  2004,  20:  10413 
  • 28 Stanovnik B. Tisler M. Golob V. Hvala I. Nikolic O.
    J. Heterocycl. Chem.  1980,  17:  733 
  • 29 Motoshima K. Hiwasa Y. Yoshikawa M. Fujimoto K. Tai A. Kakuta H. Sasaki K. ChemMedChem  2007,  2:  1527 
  • 30 Paruszewski R. Strupinska M. Rostafinska-Suchar G. Stables JP. Protein Pept. Lett.  2003,  10:  475 
  • 31 Yeung JM. Knaus EE. Eur. J. Med. Chem.  1986,  21:  181 
  • 32 Natta G. Pino P. Ercoli R. J. Am. Chem. Soc.  1952,  74:  4496 
  • 33 Joshi BP. Hosangadi BD. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1978,  16:  1067 
  • 34 Shiina I. Kawakita Y. Tetrahedron  2004,  60:  4729 
  • 35 Barton DHR. Ozbalik N. Vacher B. Tetrahedron  1988,  44:  3501 
  • 36 Kametani T. Umezawa O. Chem. Pharm. Bull.  1966,  14:  369 
  • 37 Britsun VN. Russ. J. Org. Chem.  2006,  42:  1719