Abstract
In the last decade, the use of (hetero)aromatic carboxylic acids
as aryl donors in C-C bond-forming reactions has emerged
as a powerful tool for organic synthesis. In this review article
we describe the progress that has been achieved in the coupling
of these acids with (pseudo)haloarenes, arenes, alkenes and alkynes,
among other coupling partners, with particular emphasis on the most
recent developments.
1 Introduction
2 Decarboxylative Cross-Couplings
3 Oxidative Decarboxylative Cross-Couplings
4 Miscellaneous Decarboxylative Transformations
5 Conclusions
Key words
carboxylic acids - decarboxylation - cross-coupling - palladium - catalysis
References <A NAME="RE103911SS-1">1 </A>
Other types of carboxylic acids have
also been used in carbon-carbon bond-forming reactions
(e.g., propargylic, aliphatic or 2-oxo carboxylic acids - see
ref. 2), however this review will focus on the use of(hetero)aromatic
carboxylic acids.
For other reviews on decarboxylative
functionalization, see:
<A NAME="RE103911SS-2A">2a </A>
Satoh T.
Miura M.
Synthesis
2010,
3395
<A NAME="RE103911SS-2B">2b </A>
Rodriguez N.
Goossen LJ.
Chem. Soc. Rev.
2011,
40:
5030
<A NAME="RE103911SS-2C">2c </A>
Shang R.
Liu L.
Sci. China Chem.
2011,
54:
1670
<A NAME="RE103911SS-3">3 </A>
Shepard AF.
Winslow NR.
Jonhson JR.
J. Am. Chem. Soc.
1930,
52:
2083
<A NAME="RE103911SS-4A">4a </A>
Björklund C.
Nilsson M.
Acta
Chem. Scand.
1968,
22:
2585
<A NAME="RE103911SS-4B">4b </A>
Chodowska-Palicka J.
Nilsson M.
Acta Chem. Scand.
1970,
24:
3353
<A NAME="RE103911SS-4C">4c </A>
Chodowska-Palicka J.
Nilsson M.
Acta Chem.
Scand.
1971,
25:
3451
<A NAME="RE103911SS-5A">5a </A>
Cohen T.
Schambach RA.
J.
Am. Chem. Soc.
1970,
92:
3189
<A NAME="RE103911SS-5B">5b </A>
Cohen T.
Berninger RW.
Wood JT.
J. Org. Chem.
1978,
43:
837
<A NAME="RE103911SS-6">6 </A>
Cairncross A.
Roland JR.
Henderson RM.
Sheppard WA.
J.
Am. Chem. Soc.
1970,
92:
3187
<A NAME="RE103911SS-7A">7a </A>
Goossen LJ.
Thiel WR.
Rodriguez N.
Linder C.
Melzer B.
Adv. Synth.
Catal.
2007,
349:
2241
<A NAME="RE103911SS-7B">7b </A>
Goossen LJ.
Manjolinho F.
Khan BA.
Rodriguez N.
J.
Org. Chem.
2009,
74:
2620
<A NAME="RE103911SS-8">8 </A>
Tanaka D.
Romeril SP.
Myers AG.
J. Am. Chem. Soc.
2005,
127:
10323
<A NAME="RE103911SS-9A">9a </A>
Dickstein JS.
Mulrooney CA.
O’Brien EM.
Morgan BJ.
Kozlowski MC.
Org. Lett.
2007,
9:
2441
<A NAME="RE103911SS-9B">9b </A>
O’Brien EM.
Morgan BJ.
Kozlowski MC.
Angew. Chem. Int.
Ed.
2008,
47:
6877
<A NAME="RE103911SS-10">10 </A>
Nuñez Magro AA.
Eastham GR.
Cole-Hamilton DJ.
Dalton Trans.
2009,
4683
<A NAME="RE103911SS-11">11 </A>
Cornella J.
Righi M.
Larrosa I.
Angew.
Chem. Int. Ed.
2011,
50:
9429
<A NAME="RE103911SS-12">12 </A>
Goossen LJ.
Linder C.
Rodriguez N.
Lange PP.
Fromm A.
Chem.
Commun.
2009,
7173
<A NAME="RE103911SS-13">13 </A>
Cornella J.
Sanchez C.
Banawa D.
Larrosa I.
Chem. Commun.
2009,
7176
<A NAME="RE103911SS-14">14 </A>
Lu P.
Sanchez C.
Cornella J.
Larrosa I.
Org. Lett.
2009,
11:
5710
<A NAME="RE103911SS-15">15 </A>
Jafarpour F.
Jalalimanesh N.
Olia MBA.
Kashani AO.
Tetrahedron
2010,
66:
9508
<A NAME="RE103911SS-16">16 </A>
Sun Z.-M.
Zhang J.
Zhao P.
Org.
Lett.
2010,
12:
992
<A NAME="RE103911SS-17">17 </A>
Dupuy S.
Lazreg F.
Slawin AMZ.
Cazin CSJ.
Nolan SP.
Chem. Commun.
2011,
47:
5455
<A NAME="RE103911SS-18">18 </A>
Cornella J.
Rosillo-Lopez M.
Larrosa I.
Adv.
Synth. Catal.
2011,
353:
1359
<A NAME="RE103911SS-19">19 </A> Similar conditions had previously
been reported to mediate C-H activation processes in electron-deficient
arenes:
Lu P.
Boorman TC.
Slawin AMZ.
Larrosa I.
J. Am. Chem. Soc.
2010,
132:
5580
<A NAME="RE103911SS-20A">20a </A>
Nilsson M.
Acta Chem. Scand.
1966,
20:
423
<A NAME="RE103911SS-20B">20b </A>
Nilsson M.
Ullenius C.
Acta Chem. Scand.
1968,
22:
1998
<A NAME="RE103911SS-21A">21a </A>
Heim A.
Terpin A.
Steglich W.
Angew. Chem. Int. Ed.
1997,
36:
155
<A NAME="RE103911SS-21B">21b </A>
Peschko C.
Winklhofer C.
Steglich W.
Chem.
Eur. J.
2000,
6:
1147
<A NAME="RE103911SS-22A">22a </A>
Goossen LJ.
Deng G.
Levy LM.
Science
2006,
313:
662
<A NAME="RE103911SS-22B">22b </A>
Goossen LJ.
Rodriguez N.
Melzer B.
Linder C.
Deng G.
Levy L.
J. Am. Chem. Soc.
2007,
129:
4824
<A NAME="RE103911SS-23">23 </A>
Goossen LJ.
Zimmermann B.
Linder C.
Rodriguez N.
Lange PP.
Hartung J.
Adv. Synth. Catal.
2009,
351:
2667
<A NAME="RE103911SS-24">24 </A>
Goossen LJ.
Zimmermann B.
Knauber T.
Angew.
Chem. Int. Ed.
2008,
47:
7103
<A NAME="RE103911SS-25">25 </A>
Goossen LJ.
Rodriguez N.
Linder C.
J.
Am. Chem. Soc.
2008,
130:
15248
<A NAME="RE103911SS-26">26 </A>
Lange PP.
Goossen LJ.
Podmore P.
Underwood T.
Sciammetta N.
Chem.
Commun.
2011,
3628
<A NAME="RE103911SS-27">27 </A>
Goossen LJ.
Rodriguez N.
Lange PP.
Linder C.
Angew. Chem. Int. Ed.
2010,
49:
1111
<A NAME="RE103911SS-28">28 </A>
Becht J.-M.
Catala C.
Le Drian C.
Wagner A.
Org. Lett.
2007,
9:
1781
<A NAME="RE103911SS-29">29 </A>
Wang Z.
Ding Q.
He X.
Wu J.
Tetrahedron
2009,
65:
4635
<A NAME="RE103911SS-30">30 </A>
Becht J.-M.
Le Drian C.
Org. Lett.
2008,
10:
3161
<A NAME="RE103911SS-31">31 </A>
Zhang F.
Greaney MF.
Org. Lett.
2010,
12:
4745
<A NAME="RE103911SS-32">32 </A>
Goossen LJ.
Lange PP.
Rodriguez N.
Linder C.
Chem. Eur. J.
2010,
16:
3906
<A NAME="RE103911SS-33">33 </A>
Forgione P.
Brochu M.-C.
St-Onge M.
Thesen KH.
Bailey MD.
Bilodeau F.
J. Am.
Chem. Soc.
2006,
128:
11350
<A NAME="RE103911SS-34">34 </A>
Bilodeau F.
Brochu M.-C.
Guimond N.
Thesen KH.
Forgione P.
J.
Org. Chem.
2010,
75:
1550
<A NAME="RE103911SS-35">35 </A>
Nakano M.
Tsurugi H.
Satoh T.
Miura M.
Org. Lett.
2008,
10:
1851
<A NAME="RE103911SS-36">36 </A>
Miyasaka M.
Hirano K.
Satoh T.
Miura M.
Adv. Synth. Catal.
2009,
351:
2683
<A NAME="RE103911SS-37">37 </A>
Miyasaka M.
Fukushima A.
Satoh T.
Hirano K.
Miura M.
Chem.
Eur. J.
2009,
15:
3674
<A NAME="RE103911SS-38">38 </A>
Shang R.
Xu Q.
Jiang Y.-Y.
Wang Y.
Liu L.
Org. Lett.
2010,
12:
1000
<A NAME="RE103911SS-39">39 </A>
Arroyave FA.
Reynolds JR.
Org. Lett.
2010,
12:
1328
<A NAME="RE103911SS-40">40 </A>
Shang R.
Fu Y.
Wang Y.
Xu Q.
Yu H.-Z.
Liu L.
Angew.
Chem. Int. Ed.
2009,
48:
9350
<A NAME="RE103911SS-41">41 </A>
Shi W.
Liu C.
Lei A.
Chem.
Soc. Rev.
2011,
40:
2761
<A NAME="RE103911SS-42">42 </A>
Dai J.-J.
Liu J.-H.
Luo D.-F.
Liu L.
Chem. Commun.
2011,
47:
677
<A NAME="RE103911SS-43">43 </A>
Cornella J.
Lahlali H.
Larrosa I.
Chem.
Commun.
2010,
46:
8276
<A NAME="RE103911SS-44">44 </A>
Voutchokva A.
Coplin A.
Leadbeater NE.
Crabtree RH.
Chem. Commun.
2008,
6312
<A NAME="RE103911SS-45">45 </A>
Wang C.
Piel I.
Glorius F.
J.
Am. Chem. Soc.
2009,
131:
4194
<A NAME="RE103911SS-46">46 </A>
Cornella J.
Lu P.
Larrosa I.
Org.
Lett.
2009,
11:
5506
Direct arylation of indoles can
afford C2 or C3 adducts depending on the reaction conditions. For
selected examples, see:
<A NAME="RE103911SS-47A">47a </A>
Stuart DR.
Fagnou K.
Science
2007,
316:
1172
<A NAME="RE103911SS-47B">47b </A>
Stuart DR.
Villemure E.
Fagnou K.
J. Am. Chem. Soc.
2007,
129:
12072
<A NAME="RE103911SS-47C">47c </A>
Lebrasseur N.
Larrosa I.
J. Am. Chem. Soc.
2008,
130:
2926
<A NAME="RE103911SS-47D">47d </A>
Phipps RJ.
Grimster NP.
Gaunt MJ.
J. Am. Chem. Soc.
2008,
130:
8172
<A NAME="RE103911SS-47E">47e </A>
Yang S.-D.
Sun C.-L.
Fang Z.
Li B.-J.
Li Y.-Z.
Shi Z.-J.
Angew.
Chem. Int. Ed.
2008,
47:
1473
<A NAME="RE103911SS-47F">47f </A>
Joucla L.
Batail N.
Djackovitch L.
Adv.
Synth. Catal.
2010,
352:
2929
<A NAME="RE103911SS-47G">47g </A>
Zunjun L.
Bangben Y.
Yuhong Z.
Org.
Lett.
2010,
12:
3185
<A NAME="RE103911SS-47H">47h </A>
Liang W.
Wen-Bin Y.
Cun C.
Chem.
Commun.
2011,
47:
806
<A NAME="RE103911SS-47I">47i </A>
Nadres ET.
Lazareva A.
Daugulis O.
J. Org. Chem.
2011,
76:
471
For reviews, see:
<A NAME="RE103911SS-47J">47j </A>
Joucla L.
Djackovitch L.
Adv. Synth. Catal.
2009,
351:
673
<A NAME="RE103911SS-47K">47k </A>
Bellina F.
Rossi R.
Tetrahedron
2009,
65:
10269
<A NAME="RE103911SS-48">48 </A>
Zhou J.
Hu P.
Zhang M.
Huang S.
Wang M.
Su W.
Chem.
Eur. J.
2010,
16:
5876
<A NAME="RE103911SS-49">49 </A>
Zhang F.
Greaney MF.
Angew. Chem. Int.
Ed.
2010,
49:
2768
<A NAME="RE103911SS-50">50 </A>
Xie K.
Yang Z.
Zhou X.
Li X.
Wang S.
Tan Z.
An X.
Guo C.-C.
Org.
Lett.
2010,
12:
1564
<A NAME="RE103911SS-51">51 </A>
Zhao H.
Wei Y.
Xu J.
Kan J.
Su W.
Hong M.
J.
Org. Chem.
2011,
76:
882
<A NAME="RE103911SS-52">52 </A>
Yu W.-Y.
Sit WN.
Zhou Z.
Chan AS.-C.
Org. Lett.
2009,
11:
3174
<A NAME="RE103911SS-53">53 </A>
Myers AG.
Tanaka D.
Mannion MR.
J.
Am. Chem. Soc.
2002,
124:
11250
<A NAME="RE103911SS-54">54 </A>
Tanaka D.
Myers AG.
Org. Lett.
2004,
6:
433
<A NAME="RE103911SS-55">55 </A>
Hu P.
Kan J.
Su W.
Hong M.
Org.
Lett.
2009,
11:
2341
<A NAME="RE103911SS-56">56 </A>
Fu Z.
Huang S.
Su W.
Hong M.
Org.
Lett.
2010,
12:
4992
<A NAME="RE103911SS-57">57 </A>
Fu Z.
Huang S.
Kan J.
Su W.
Hong M.
Dalton Trans.
2010,
39:
11317
<A NAME="RE103911SS-58">58 </A>
Zhao Y.
Zhang Y.
Wang J.
Li H.
Wu L.
Liu Z.
Synlett
2010,
2352
<A NAME="RE103911SS-59">59 </A>
Wang J.
Cui Z.
Zhang Y.
Li H.
Wu L.-M.
Liu Z.
Org. Biomol.
Chem.
2011,
9:
663
<A NAME="RE103911SS-60">60 </A>
Goossen LJ.
Zimmermann B.
Knauber T.
Beilstein
J. Org. Chem.
2010,
6:
43
<A NAME="RE103911SS-61">61 </A>
Ueaura K.
Satoh T.
Miura M.
J.
Org. Chem.
2007,
72:
5362
<A NAME="RE103911SS-62">62 </A>
Shimizu M.
Hirano K.
Satoh T.
Miura M.
J. Org. Chem.
2009,
74:
3478
<A NAME="RE103911SS-63">63 </A>
Yamashita M.
Hirano K.
Satoh T.
Miura M.
Org. Lett.
2009,
11:
2337
<A NAME="RE103911SS-64">64 </A>
Wang C.
Rakshit S.
Glorius F.
J.
Am. Chem. Soc.
2010,
132:
14006
<A NAME="RE103911SS-65">65 </A>
Huang X.-C.
Wang F.
Liang Y.
Li J.-H.
Org. Lett.
2009,
11:
1139
<A NAME="RE103911SS-66">66 </A>
Zhang M.
Zhou J.
Kan J.
Wang M.
Su W.
Hong M.
Chem.
Commun.
2011,
46:
5455
<A NAME="RE103911SS-67">67 </A>
Luo Y.
Wu J.
Chem. Commun.
2010,
46:
3785
<A NAME="RE103911SS-68">68 </A>
Lindh J.
Sjörberg PJ.
Larhed M.
Angew. Chem. Int. Ed.
2010,
49:
7733