Synthesis 2012; 44(22): 3401-3420
DOI: 10.1055/s-0032-1316788
review
© Georg Thieme Verlag Stuttgart · New York

π-Acid Mediated Insertion of Alkynes into Carbon–Heteroatom σ-Bonds

Holly V. Adcock
School of Chemistry, University of Birmingham, B15 2TT, UK   Fax: +44(121)4144403   Email: [email protected]
,
Paul W. Davies*
School of Chemistry, University of Birmingham, B15 2TT, UK   Fax: +44(121)4144403   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 10 August 2012

Accepted after revision: 10 September 2012

Publication Date:
02 October 2012 (online)


Abstract

The rapidly expanding field of gold and platinum π-acid catalysis has led to the discovery of diverse transformations that are initiated with nucleophilic attack onto a metal-activated alkyne. This review brings together those reactions which employ a heteroatom nucleophile bearing a functional group that can subsequently migrate to effect a formal insertion of the alkyne into a carbon–heteroatom­ σ-bond. This reactivity profile is encountered in a range of efficient and powerful cycloisomerisations for the preparation of carbo- and heterocycles.

1 Introduction

2 1,2-Addition of Carbon–Heteroatom Bonds across Alkynes

2.1 Heteroatom-to-Carbon Allyl Migrations

2.2 Accessing Sigmatropic Rearrangements

2.3 Related Palladium-Catalysed 1,2-Carboalkoxylations and Carboaminations

2.4 Beyond Allyl Migration in the 1,2-Carbofunctionalisation of Alkynes

2.5 Oxonium Ion Migration

2.6 Migrating Centres at Higher Oxidation Levels

2.7 Migration of Heteroatoms

3 1,5 Heteroatom-to-Carbon Migrations

3.1 Alkynyl Benzoates as Alkylating Agents

4 Internal versus External Migrations

4.1 Internal Migrations of Oxonium Species

5 1,1-Carbofunctionalisations

6 Application in Natural Products

7 Summary and Conclusions

 
  • References

    • 1a Kang EJ, Lee E. Chem. Rev. 2005; 105: 4348
    • 1b Saleem M, Kim HJ, Ali MS, Lee YS. Nat. Prod. Rep. 2005; 22: 696
    • 1c Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2009; 48: 3224
    • 1d Zhong J. Nat. Prod. Rep. 2011; 28: 1143
    • 2a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 2b Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
    • 2c Russel JS, Pelkey ET, Greger JG. Prog. Heterocycl. Chem. 2011; 23: 155
    • 2d Yeung KS, Peng XS, Wu J, Hou XL. Prog. Heterocycl. Chem. 2011; 23: 195
    • 2e Majumdar KC, Samanta S, Sinha B. Synthesis 2012; 812
    • 3a Trost BM. Science 1991; 254: 1471
    • 3b Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259
    • 3c Trost BM. Acc. Chem. Res. 2002; 35: 695
    • 3d Gaich T, Baran PS. J. Org. Chem. 2010; 75: 4657
    • 3e Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
    • 4a Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
    • 4b Aubert C, Fensterbank P, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
    • 4c Watson ID. G, Toste FD. Chem. Sci. 2012; in press, DOI: DOI 10.1039/c2sc20542d.
    • 5a Severin R, Doye S. Chem. Soc. Rev. 2007; 36: 1407
    • 5b Müller TE, Hultzsch KC, Miguel Y, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 5c Pohlki F, Doye S. Chem. Soc. Rev. 2003; 32: 104

      Selected general reviews of π-acid reactivity:
    • 6a Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 6b Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
    • 6c Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 6d Gorin DJ, Toste FD. Nature 2007; 446: 395
    • 6e Li J, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
    • 6f Hashmi AS. K. Angew. Chem. Int. Ed. 2010; 49: 5232
    • 6g Jiménez-Núñez E, Echavarren AM. Chem. Commun. 2007; 333

      Selected reviews of gold-catalysed heterocyclisations:
    • 7a Widenhoefer RA, Han X. Eur. J. Org. Chem. 2006; 4555
    • 7b Shen HC. Tetrahedron 2008; 64: 3885
    • 7c Shen HC. Tetrahedron 2008; 64: 7847
    • 7d Kirsch SF. Synthesis 2008; 20: 3183
    • 7e Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
    • 7f Hashmi AS. K, Buehrle M. Aldrichimica Acta 2010; 43: 27
    • 7g Huang H, Zhou Y, Liu H. Beilstein J. Org. Chem. 2011; 7: 897
    • 7h Alcaide B, Almendros P, Alonso JM. Org. Biomol. Chem. 2011; 9: 4405
    • 7i Patil NT, Singh V. J. Organomet. Chem. 2011; 696: 419
    • 7j Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 7k For X→C functional group migrations in heterocycle synthesis, see: Patil NT, Kavthe RD, Yamamoto Y. Adv. Heterocycl. Chem. 2010; 101: 75

      Recent reviews:
    • 8a Brenzowich Jr WE. Angew. Chem. Int. Ed. 2012; 51: 8933
    • 8b Crouter CM, Hashmi AS. K, Perpointner M. ChemCatChem 2010; 2: 1226
  • 9 Trost BM, Dong G. Nature 2009; 456: 485

    • Other examples include:
    • 10a Liu B, De Brabander JK. Org. Lett. 2006; 8: 4907
    • 10b Li Y, Zhou F, Forsyth CJ. Angew. Chem. Int. Ed. 2007; 46: 279
    • 10c Jung HH, Floreancig PE. J. Org. Chem. 2007; 72: 7359
    • 10d Trost BM, O’Boyle BM, Hund D. J. Am. Chem. Soc. 2009; 131: 15061
    • 10e Fortner KC, Kato D, Tanaka Y, Shair MD. J. Am. Chem. Soc. 2010; 132: 275
    • 10f Fang C, Pang Y, Forsyth CJ. Org. Lett. 2010; 12: 4528
    • 10g Tlais SF, Dudley GB. Org. Lett. 2010; 12: 4698
    • 10h Tlais SF, Dudley GB. J. Org. Chem. 2011; 7: 570
    • 10i Benson S, Collin M.-P, Arlt A, Gabor B, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 8739
    • 10j Chaładaj W, Corbet M, Fürstner A. Angew. Chem. Int. Ed. 2012; 51: 6929
  • 11 Lavallo V, Frey GD, Donnadieu B, Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2008; 47: 5224
  • 12 Haggin J. Chem. Eng. News 1993; 71 (22): 23
  • 13 Fürstner A, Szillat H, Gabor B, Mynott R. J. Am. Chem. Soc. 1998; 120: 8305
  • 14 Fürstner A, Stelzer F, Szillat H. J. Am. Chem. Soc. 2000; 122: 6785
  • 15 Fürstner A, Stelzer F, Szillat H. J. Am. Chem. Soc. 2001; 123: 11863
  • 16 Fürstner A, Davies PW. J. Am. Chem. Soc. 2005; 127: 15024
  • 17 Fürstner A, Davies PW, Gress T. J. Am. Chem. Soc. 2005; 127: 8244
  • 18 Nakamura I, Sato T, Yamamoto Y. Angew. Chem. Int. Ed. 2006; 45: 4473
  • 19 Davies PW, Albrecht SJ.-C. Chem. Commun. 2008; 238
  • 20 Istrate F, Gagosz FM. Org. Lett. 2007; 9: 3181
  • 21 Istrate F, Gagosz FM. Beilstein J. Org. Chem. 2011; 7: 878
  • 22 Ueda M, Sato A, Yuki I, Miyoshi T, Naito T, Miyata O. Org. Lett. 2010; 12: 2594
  • 23 Hong HJ, Tantillo DJ. Organometallics 2011; 30: 5825
    • 24a Cariou K, Ronan B, Mignani S, Fensterbank L, Malacria M. Angew. Chem. Int. Ed. 2007; 46: 1881
    • 24b For related gold-catalysed synthesis of 1-cyanoisoindoles, see: Heugebaert TS. A, Stevens CV. Org. Lett. 2009; 11: 5018
  • 25 Ting C.-M, Wang C.-D, Chaudhuri R, Liu R.-S. Org. Lett. 2011; 13: 1702
  • 26 Cacchi S, Fabrizi G, Pace P. J. Org. Chem. 1998; 63: 1001
  • 27 Tsuda T, Ohashi Y, Nagahama N, Sumiya R, Saegusa T. J. Org. Chem. 1988; 53: 2650
    • 28a Ma S, Shi Z. J. Org. Chem. 2003; 68: 6149
    • 28b Ma S, Shi Z. J. Org. Chem. 1998; 63: 6387
    • 29a Cacchi S, Fabrizi G, Moro L. Tetrahedron Lett. 1998; 39: 5101
    • 29b Cacchi S, Fabrizi G, Moro L. Synlett 1998; 741
    • 29c Montiero N, Balme G. Synlett 1998; 746
  • 30 Liang Z, Ma S, Yu J, Xu R. J. Org. Chem. 2007; 72: 9219
  • 31 Kuniyasu H, Takekawa K, Sanagawa A, Wakasa T, Iwasaki T, Kambe N. Tetrahedron Lett. 2011; 52: 5501
  • 32 Nakamura I, Okamoto M, Sato T, Terada M. Heterocycles 2010; 82: 689
  • 33 Sato T, Nakamura I, Terada M. Eur. J. Org. Chem. 2009; 5509
  • 34 Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard III WA, Toste FD. Nat. Chem. 2009; 1: 482
  • 35 Seidel G, Mynott R, Fürstner A. Angew. Chem. Int. Ed. 2009; 48: 2510
  • 36 Nakamura I, Sato T, Terada M, Yamamoto Y. Org. Lett. 2008; 10: 2649
  • 37 Nakamura I, Mizushima Y, Yamamoto Y. J. Am. Chem. Soc. 2005; 127: 15022
  • 38 Nakamura I, Chan CS, Araki M, Yamamoto Y. Org. Lett. 2008; 10: 309
  • 39 Nakamura I, Chan CS, Araki T, Terada M, Yamamoto Y. Adv. Synth. Catal. 2009; 351: 1089
  • 40 Zhang M, Wang Y, Yang Y, Hu X. Adv. Synth. Catal. 2012; 354: 981
  • 41 Shimada T, Nakamura I, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 10546
  • 42 Nakamura I, Sato Y, Konta S, Terada M. Tetrahedron Lett. 2009; 50: 2075
  • 43 Zeng X, Kinjo B, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 942
  • 44 Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 2284
  • 45 Nakamura I, Sato T, Terada M, Yamamoto Y. Org. Lett. 2007; 9: 4081
  • 46 Komeyama K, Takahashui K, Takaki K. Org. Lett. 2008; 10: 5119
  • 47 Hashmi AS. K, Lothschütz C, Döpp R, Ackermann M, De Buck Becker J, Rudolph M, Scholz C, Rominger R. Adv. Synth. Catal. 2012; 354: 133
  • 48 Shi Y, Roth KE, Ramgren SD, Blum SA. J. Am. Chem. Soc. 2009; 131: 18022
  • 49 Liu L.-P, Xu B, Mashuta MS, Hammond GB. J. Am. Chem. Soc. 2008; 130: 17642

    • See references 6f, 49, and:
    • 50a Liu L.-P, Hammond GB. Chem. Soc. Rev. 2012; 41: 3129
    • 50b Egorova OA, Seo H, Kim Y, Moon D, Rhee YM, Ahn KH. Angew. Chem. Int. Ed. 2011; 50: 11446
    • 50c Hashmi AS. K, Ramamurthi TD, Rominger F. Adv. Synth. Catal. 2010; 352: 971
    • 50d Hashmi AS. K, Schuster AM, Rominger F. Angew. Chem. Int. Ed. 2009; 48: 8247
    • 50e Liu L.-P, Hammond GB. Chem.–Asian J. 2009; 4: 1230
    • 51a Asao N, Aikawa H, Tago S, Umetsu K. Org. Lett. 2007; 9: 4299
    • 51b Jean M, Renault J, Weghe PV.-D, Asao N. Tetrahedron Lett. 2010; 51: 378
    • 51c Aikawa H, Tago S, Umetsu K, Haginiwa N, Asao N. Tetrahedron 2009; 65: 1774
  • 52 Aikawa H, Kaneko T, Asao N. Beilstein J. Org. Chem. 2011; 7: 648
  • 53 Yamamoto H, Pandey G, Asai Y, Nakano M, Kinoshita A, Namba K, Imagawa H, Nishizawa M. Org. Lett. 2007; 9: 4029
  • 54 Dubé P, Toste FD. J. Am. Chem. Soc. 2006; 128: 12062
  • 55 Faza ON, Lopez CS, Lera AR. J. Org. Chem. 2011; 76: 3791
  • 56 Bae HJ, Baskar B, An SE, Cheong JY, Thangadurai DT, Hwang I.-C, Rhee YH. Angew. Chem. Int. Ed. 2008; 47: 2263
  • 57 Baskar B, Bae HJ, An SE, Cheong JY, Rhee YH, Duschek A, Kirsch SF. Org. Lett. 2008; 10: 2605
  • 58 Kim C, Bae HJ, Lee JH, Jeong W, Kim H, Sampath V, Rhee YH. J. Am. Chem. Soc. 2009; 131: 14660
  • 59 Bae JH, Jeong W, Lee JH, Rhee YH. Chem.–Eur. J. 2011; 17: 1433
  • 60 Kim C, Lim W, Rhee YH. Bull. Korean Chem. Soc. 2010; 31: 1465
  • 61 Kim H, Rhee YH. J. Am. Chem. Soc. 2012; 134: 4011

    • Reviews of 1,2-shifts in π-acid catalysis:
    • 62a Crone B, Kirsch SF. Chem.–Eur. J. 2008; 14: 3514
    • 62b Dudnik AS, Chernyak N, Gevorgyan V. Aldrichimica Acta 2010; 43: 37

    • Recent examples:
    • 62c Davies PW, Martin N, Spencer N. Beilstein J. Org. Chem. 2011; 7: 839
    • 62d Benedetti E, Lemiere G, Chapellet L.-L, Penoni A, Palmisano G, Malacria M, Goddard J.-P, Fensterbank L. Org. Lett. 2010; 12: 4396
    • 62e Davies PW, Martin N. Org. Lett. 2009; 11: 2293
    • 62f Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’in AV, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 1440
    • 62g Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 5195
    • 62h Gorin DJ, Davis NR, Toste FD. J. Am. Chem. Soc. 2005; 127: 11260
  • 63 Li G, Huang X, Zhang L. Angew. Chem. Int. Ed. 2008; 47: 346
  • 64 Takaya J, Udagawa S, Kusama H, Iwasawa N. Angew. Chem. Int. Ed. 2008; 47: 4906
  • 65 Nakamura I, Bajracharya GB, Mizushima Y, Yamamoto Y. Angew. Chem. Int. Ed. 2002; 41: 4328
  • 66 Nakamura I, Bajracharya GB, Wu H, Oishi K, Mizushima Y, Grindev ID, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 15423
  • 67 Nakamura I, Mizushima Y, Yamagishi U, Yamamoto Y. Tetrahedron 2007; 63: 8670
  • 68 Fürstner A, Heilmann EK, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 4760
  • 69 Tanaka H, Sato M, Oh-Uchi T, Yamaguchi R, Etoh H, Shimzu H, Sako M, Takeuchi H. Phytomedicine 2004; 11: 331
    • 70a Keen NT, Zaki AI, Sims JJ. Phytochemistry 1972; 11: 1031
    • 70b Morandi D, Le Quere JL. New Phytol. 1991; 117: 75
  • 71 Lui L, Wang Y, Zhang L. Org. Lett. 2012; 14: 3736
  • 72 Allen GR, Poletto JF, Weiss MJ. J. Am. Chem. Soc. 1964; 86: 3877