Synlett 2012; 23(15): 2201-2204
DOI: 10.1055/s-0032-1316993
letter
© Georg Thieme Verlag Stuttgart · New York

Titanium(IV) Isopropoxide as an Efficient Catalyst for Direct Amidation of Nonactivated Carboxylic Acids

Helena Lundberg
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden, Fax: +46(8)154908   Email: hansa@organ.su.se
,
Fredrik Tinnis
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden, Fax: +46(8)154908   Email: hansa@organ.su.se
,
Hans Adolfsson*
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden, Fax: +46(8)154908   Email: hansa@organ.su.se
› Author Affiliations
Further Information

Publication History

Received: 25 May 2012

Accepted after revision: 03 July 2012

Publication Date:
17 August 2012 (online)


Abstract

Secondary and tertiary amides are formed in high yields, in an efficient and environmentally benign titanium(IV) isoprop­oxide catalyzed direct amidation of carboxylic acids with primary and secondary amines.

Supporting Information

 
  • References and Notes

  • 1 Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
    • 2a Perreux L, Loupy A, Volatron F. Tetrahedron 2002; 58: 2155
    • 2b Gelens E, Smeets L, Sliedregt LA. J. M, Van Steen BJ, Kruse CG, Leurs R, Orru RV. A. Tetrahedron Lett. 2005; 46: 3751
    • 2c Wang Q, Yang X.-J, Liu F, You Q.-D. Synth. Commun. 2008; 38: 1028
    • 2d Gooßen LJ, Ohlmann DM, Lange PP. Synthesis 2009; 160
    • 2e Charville H, Jackson DA, Hodges G, Whiting A, Wilson MR. Eur. J. Org. Chem. 2011; 5981
    • 3a Han S, Kim Y. Tetrahedron 2004; 60: 2447
    • 3b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
  • 4 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL, Linderman RJ. Jr, Lorenz K, Manley J, Pearlman BA, Wells A, Zaksh A, Zhang TY. Green Chem. 2007; 9: 411
    • 5a Charville H, Jackson D, Hodges G, Whiting A. Chem. Commun. 2010; 46: 1813
    • 5b Al-Zoubi RM, Marion O, Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 5c Arnold K, Davies B, Hérault D, Whiting A. Angew. Chem. Int. Ed. 2008; 47: 2673
    • 5d Maki T, Ishihara K, Yamamoto H. Tetrahedron 2007; 63: 8645
    • 5e Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 5f Arnold K, Batsanov AS, Davies B, Whiting A. Green Chem. 2008; 10: 124
    • 5g Arnold K, Davies B, Giles RL, Grosjean C, Smith GE, Whiting A. Adv. Synth. Catal. 2006; 348: 813
    • 5h Maki T, Ishihara K, Yamamoto H. Org. Lett. 2006; 8: 1431
    • 5i Starkov P, Sheppard TD. Org. Biomol. Chem. 2011; 9: 1320
    • 5j Ishihara K. Tetrahedron 2009; 65: 1085
    • 6a Ulijn RV, Baragaña B, Hallning PJ, Flitsch SL. J. Am. Chem. Soc. 2002; 124: 10988
    • 6b Litjens MJ. J, Straathof AJ. J, Jongejan JA, Heijnen JJ. Tetrahedron 1999; 55: 12411
    • 6c Van Rantwijk F, Hacking MA. P. J, Sheldon RA. Monatsh. Chem. 2000; 131: 549
    • 7a Shteinberg LY, Kondratov SA, Shein SM. Zh. Org. Khim. 1988; 1968
    • 7b Shteinberg LY, Kondratov SA, Shein SM. Zh. Org. Khim. 1989; 1945
    • 7c Nordahl Å, Carlson R. Acta Chem. Scand. B 1988; 28
    • 7d Chaudhari PS, Salim SD, Sawant RV, Akamanchi KG. Green Chem. 2010; 12: 1707
    • 7e Tamaddon F, Aboee F, Nasiri A. Catal. Commun. 2011; 16: 194
    • 7f Hosseini-Sarvari M, Sodagar E, Doroodmand MM. J. Org. Chem. 2011; 76: 2853
  • 8 Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
  • 9 Lundberg H, Tinnis F, Adolfsson H. Chem.–Eur. J. 2012; 18: 3822
    • 10a Ishihara K, Ohara S, Yamamoto H. Science 2000; 290: 1140
    • 10b Ishihara K, Nakayama M, Ohara S, Yamamoto H. Synlett 2001; 1117
    • 10c Ishihara K, Nakayama M, Ohara S, Yamamoto H. Tetrahedron 2002; 58: 8179
    • 10d Nakayama M, Sato A, Ishihara K, Yamamoto H. Adv. Synth. Catal. 2004; 346: 1275
    • 10e Sato A, Nakamura Y, Maki T, Ishihara K, Yamamoto H. Adv. Synth. Catal. 2005; 347: 1337
    • 10f Nakamura Y, Maki T, Wang X, Ishihara K, Yamamoto H. Adv. Synth. Catal. 2006; 348: 1505
  • 11 Grosjean C, Parker J, Thirsk C, Wright AR. Org. Process Res. Dev. 2012; 16: 781
  • 12 See ref. 9 for a more extensive list of values for thermal amidation at 70 °C