Synlett 2014; 25(14): 2019-2024
DOI: 10.1055/s-0034-1378351
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Highly Functionalized Benzofuran-2-carboxamides by Ugi Four-Component Reaction and Microwave-Assisted Rap–Stoermer Reaction

Weiwei Han
a  Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China   Fax: +86(571)87953128   Email: [email protected]
,
Jinlong Wu
a  Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China   Fax: +86(571)87953128   Email: [email protected]
,
Wei-Min Dai*
a  Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China   Fax: +86(571)87953128   Email: [email protected]
b  Laboratory of Advanced Catalysis and Synthesis, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China   Fax: +85223581594   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 03 May 2014

Accepted after revision: 27 May 2014

Publication Date:
09 July 2014 (online)


Abstract

A two-step, diversity-oriented synthesis of highly functionalized benzofuran-2-carboxamides has been developed. The Ugi four-component reaction of aromatic amines, isocyanides, 2-bromobenzaldehyde, and 2-bromoacetic acid was used to provide a collection of N-aryl 2-bromoacetamides. The latter were then reacted with selected salicyladehydes in the presence of Cs2CO3 in acetonitrile under controlled microwave heating at 90–140 °C for 15–40 minutes to furnish the benzofuran-2-carboxamides in moderate to good yields.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 1b Ziegert RE, Toräng J, Knepper K, Bräse S. J. Comb. Chem. 2005; 7: 147
    • 2a Marriott K.-SC, Morrison AZ, Moore M, Olubajo O, Stewart LE. Bioorg. Med. Chem. 2012; 20: 6856
    • 2b Marriott K.-SC, Prasad M, Thapliyal V, Bose HS. J. Pharmacol. Exp. Ther. 2012; 343: 578
    • 3a Mazurov AA, Kombo DC, Hauser TA, Miao L, Dull G, Genus JF, Fedorov NB, Benson L, Sidach S, Xiao Y, Hammond PS, James JW, Miller CH, Yohannes D. J. Med. Chem. 2012; 55: 9793
    • 3b Boess FG, De Vry J, Erb C, Flessner T, Hendrix M, Luithle J, Methessel C, Riedl B, Schnizler K, van der Staay F.-J, van Kampen M, Wiese WB, Koenig G. J. Pharmacol. Exp. Ther. 2007; 321: 716
    • 3c Drahl C, Jarvis LM. Chem. Eng. News 2014; 92: 26
  • 4 Sledz P, Silvestre HL, Hung AW, Ciulli A, Blundell TL, Abell C. J. Am. Chem. Soc. 2010; 132: 4544
  • 5 Whitby LR, Lee AM, Kunz S, Oldstone MB. A, Boger DL. Bioorg. Med. Chem. Lett. 2009; 19: 3771
  • 6 Chen JM, Nelson FC, Levin JI, Mobilio D, Moy FJ, Nilakantan R, Zask A, Powers R. J. Am. Chem. Soc. 2000; 122: 9648
    • 7a Bartoszyk GD, Hegenbert R, Ziegler H. Eur. J. Pharmacol. 1997; 322: 147
    • 7b Treit D, Degroot A, Kashluba S, Bartoszyk GD. Eur. J. Pharmacol. 2001; 414: 245
    • 7c Page ME, Cryan JF, Sullivan A, Dalvi A, Saucy B, Manning DR, Lucki I. J. Pharmacol. Exp. Ther. 2002; 302: 1220
    • 7d Heinrich T, Böttcher H, Gericke R, Bartoszyk GD, Anzali S, Seyfried CA, Greiner HE, van Amsterdam C. J. Med. Chem. 2004; 47: 4684
    • 7e Dawson LA, Watson JM. CNS Neurosci. Ther. 2009; 15: 107
    • 7f Laughren TP, Gobburu J, Temple RJ, Unger EF, Bhattaram A, Dinh PV, Fossom L, Hung HM. J, Klimek V, Lee JE, Levin RL, Lindberg CY, Mathis M, Rosloff BN, Wang S.-J, Wang Y, Yang P, Yu B, Zhang H, Zhang L, Zineh I. J. Clin. Psychiatry 2011; 72: 1166
    • 8a Alper-Hayta S, Arisoy M, Temiz-Arpaci Ö, Yildiz I, Aki E, Özkan S, Kaynak F. Eur. J. Med. Chem. 2008; 43: 2568
    • 8b Hranjec M, Sović I, Ratkaj I, Pavlović G, Ilić N, Valjalo L, Pavelić K, Pavelić SK, Karminski-Zamola G. Eur. J. Med. Chem. 2013; 59: 111
    • 8c Choi M.-J, Lee H, Lee J.-H, Jung KH, Kim D, Hong S, Hong S.-S. Arch. Pharm. Res. 2012; 35: 747
    • 8d Choi M.-J, Jung KH, Kim D, Lee H, Zheng H.-M, Park BH, Hong S.-W, Kim M.-H, Hong S, Hong S.-S. Cancer Lett. 2011; 306: 190
    • 8e Al-Qirim T, Shattat G, Sweidan K, El-Huneidi W, Sheikha GA, Khalaf RA, Hikmat S. Arch. Pharm. Chem. Life. Sci. 2012; 345: 401
    • 8f Shattat G, Al-Qirim T, Sweidan K, Shahwan M, El-Huneidi W, Al-Hiari Y. J. Enzyme Inhib. Med. Chem. 2010; 25: 751
    • 8g Parekh S, Bhavsar D, Savant M, Thakrar S, Bavishi A, Parmar M, Vala H, Radadiya A, Pandya N, Serly J, Molnár J, Shah A. Eur. J. Med. Chem. 2011; 46: 1942
    • 8h Xie Y.-S, Kumar D, Vijaykumar BV. D, Shrivastava TP, Zhao B.-X, Miao J.-Y, Jang K, Shin D.-S. Tetrahedron Lett. 2014; 55: 2796

      For selected reviews, see:
    • 9a McCallion GD. Curr. Org. Chem. 1999; 3: 67
    • 9b Cacchi S, Fabrizi G, Goggiamani A. Curr. Org. Chem. 2006; 10: 1423
    • 9c De Luca L, Nieddu G, Porcheddu A, Giacomelli G. Curr. Med. Chem. 2009; 16: 1
    • 9d Cacchi S, Fabrizi G, Goggiamani A. Org. Biomol. Chem. 2011; 9: 641
    • 10a Rap E. Gazz. Chim. Ital. 1895; 285: 2511
    • 10b Stoermer R. Justus Liebigs Ann. Chem. 1900; 312: 331
    • 10c Royer R, Bisagni E, Menichi G. Bull. Soc. Chim. Fr. 1964; 2112

      For selected recent examples, see:
    • 11a Pestellini V, Giolitti A, Pasqui F, Abelli L, Cutrufo C, de Salvia G, Evangelista S, Meli A. Eur. Med. Chem. 1988; 23: 203
    • 11b Bogdal D, Warzala M. Tetrahedron 2000; 56: 8769
    • 11c Masubüchi M, Kawasaki K, Ebiike H, Ikeda Y, Teujii S, Sogabe S, Fujii T, Sakata K, Shiratori Y, Aoki Y, Ohtsuka T, Shimma N. Bioorg. Med. Chem. Lett. 2001; 11: 1833
    • 11d Yoshizawa K, Toyota S, Toda F, Csöregh I. Green Chem. 2003; 5: 353
    • 11e Rao ML. N, Awasthi DK, Banerjee D. Tetrahedron 2007; 48: 431
    • 11f Sharifi A, Abaee MS, Mirzaei M. J. Iran. Chem. Soc. 2008; 5 : S113
    • 11g Wang Z, Gu J, Jing H, Liang Y. Synth. Commun. 2009; 39: 4087
    • 11h Shang Y, Wang C, He X, Ju K, Zhang M, Yu S, Wu J. Tetrahedron 2010; 66: 9629
    • 11i Kumaraswamy G, Ramakrishna G, Raju R, Padmaja M. Tetrahedron 2010; 66: 9814 . Also, see ref. 8h
    • 12a Dai W.-M, Guo D.-S, Sun L.-P. Tetrahedron Lett. 2001; 42: 5275
    • 12b Dai W.-M, Sun L.-P, Guo D.-S. Tetrahedron Lett. 2002; 43: 7699
    • 12c Dai W.-M, Guo D.-S, Sun L.-P, Huang X.-H. Org. Lett. 2003; 5: 2919
    • 12d Sun L.-P, Huang X.-H, Dai W.-M. Tetrahedron 2004; 60: 10983
  • 13 Dai W.-M, Lai KW. Tetrahedron Lett. 2002; 43: 9377
    • 14a Xing X, Wu J, Luo J, Dai W.-M. Synlett 2006; 2099
    • 14b Feng G, Wu J, Dai W.-M. Tetrahedron Lett. 2007; 48: 401
    • 14c Dai W.-M, Shi J, Wu J. Synlett 2008; 2716
    • 15a Dai W.-M, Wang X, Ma C. Tetrahedron 2005; 61: 6879
    • 15b Feng G, Wu J, Dai W.-M. Tetrahedron 2006; 62: 4635
    • 15c Xing X, Wu J, Feng G, Dai W.-M. Tetrahedron 2006; 62: 6774
    • 15d Wu J, Nie L, Luo J, Dai W.-M. Synlett 2007; 2728
    • 15e Yu G, Zheng Y, Wu J, Dai W.-M. Tetrahedron 2013; 69: 10488
    • 16a Xing X, Wu J, Dai W.-M. Tetrahedron 2006; 62: 11200
    • 16b Wu J, Jiang Y, Dai W.-M. Synlett 2009; 1162
    • 17a Dai W.-M, Shi J. Comb. Chem. High Throughput Screening 2007; 10: 837
    • 17b Dai W.-M. Diversity Oriented Synthesis 2002; 1: 11
  • 18 Similar U-4CR using alkyl amines requires 72 h at room temperature, see: Balan B, Bahulayan D. Tetrahedron Lett. 2014; 55: 227
    • 19a Marcaccini S, Pepino R, Pozo MC. Tetrahedron Lett. 2001; 42: 2727
    • 19b O’Reilly E, Lestini E, Balducci D, Paradisi F. Tetrahedron Lett. 2009; 50: 1748
  • 20 As reported in ref. 8h, a two-stage microwave heating at 80 °C for 30 min and then at 140 °C for another 30 min was used for the Rap–Stoermer reaction in DMF.
  • 21 General procedure for Ugi and Rap–Stoermer reaction To a 25-mL round-bottom flask were added aniline (1 mmol), 2-bromobenzaldehyde (1 mmol), and MeOH (8 mL), and the resultant mixture was stirred for 15 min at room temperature. 2-Bromoacetic acid (1 mmol) was added to the mixture followed by stirring for another 5 min. Finally, cyclohexyl isocyanide (1.2 mmol) was added. The resultant mixture was stirred at 50 °C for 48 h. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel; 20% EtOAc plus 5% CHCl3 in PE) to give 8a (457.4 mg, 90%). CHCl3 was added to improve the solubility of the product in mixed EtOAc and PE. The yields of 8bh are listed in Table 1. A 10-mL pressurized process vial was charged with the above U-4CR adduct 8a (0.1 mmol) and Cs2CO3 (0.25 mmol). The vial was tightly sealed with a cap containing a silicon septum. The vial was evacuated and backfilled with nitrogen several times by using a needle through the septum. MeCN (5 mL) was added by using a syringe through the septum. After stirring the mixture for 10 min at room temperature, salicyladehyde (9a; 0.12 mmol) was added (solid salicyladehydes were added prior to the evacuation–backfill cycles), and the loaded vial was then placed into a technical microwave reactor cavity and heated at 140 °C for 5 min with stirring. After cooling to room temperature, the reaction mixture was diluted with water and the resultant mixture was extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with brine, dried over anhydrous Na2SO4, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 25% EtOAc in PE) to provide the benzofuran-2-carboxamide 10a (38.8 mg, 73%). The yields of other products are listed in Table 3. N-Cyclohexyl-2-[(2-bromoacetyl)phenylamino]-2-(2-bromophenyl)acetamide (8a): White crystalline solid; mp 226–228 °C (EtOAc–hexane); Rf = 0.33 (20% EtOAc in PE). IR (film): 3271, 3075, 2929, 2850, 1651, 1556, 1494, 1364, 1237, 1210, 1027 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.53–6.96 (m, 9 H), 6.38 (s, 1 H), 5.55 (d, J = 7.0 Hz, 1 H), 3.87–3.83 (m, 1 H), 3.67 (s, 2 H), 2.02 (d, J = 13.0 Hz, 1 H), 1.88 (d, J =14.5 Hz, 1 H), 1.73 (d, J = 14.0 Hz, 1 H), 1.67–1.63 (m, 2 H), 1.39–1.32 (m, 2 H), 1.21–1.02 (m, 3 H). 13C NMR (125 MHz, CDCl3): δ = 167.9, 166.9, 138.5, 133.8, 132.8, 131.9, 130.1, 129.8 (br, ×2), 128.9 (×2), 128.8, 127.3, 126.4, 64.4, 49.0, 32.8, 32.7, 27.6, 25.5, 24.8, 24.8. MS (+ESI): m/z (%) = 511 (15.1) [M+4+H]+, 509 (28.3) [M+2+H]+, 507 (14.9) [M+H]+, 304 (96.4), 302 (100). Anal. Calcd for C22H24Br2N2O2: C, 51.99; H, 4.76; N, 5.51. Found: C, 52.20; H, 4.74; N, 5.51. N-[(2-Bromophenyl)(cyclohexylcarbamoyl)-methyl]-N-phenylbenzofuran-2-carboxamide (10a): White crystalline solid; mp 194–195 °C (EtOAc–hexane); Rf = 0.29 (20% EtOAc in PE). IR (film): 3293, 3058, 2926, 1654, 1556, 1388, 1252, 1187 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.54 (dd, J = 8.0, 2.0 Hz, 1 H), 7.41–7.11 (m, 10 H), 7.10–7.00 (m, 2 H), 6.58 (s, 1 H), 5.90 (s, 1 H), 5.66 (d, J = 8.0 Hz, 1 H), 3.91–3.84 (m, 1 H), 2.05 (d, J = 11.6 Hz, 1 H), 1.89 (d, J = 10.8 Hz, 1 H), 1.75–1.55 (m, 3 H), 1.42–1.29 (m, 2 H), 1.27–1.00 (m, 3 H). 13C NMR (125 MHz, CDCl3): δ = 168.0, 160.0, 154.4, 147.4, 139.2, 133.7, 132.7, 132.2, 130.6 (×2), 130.0, 128.6 (×2), 128.5, 127.2, 126.9, 126.6, 126.4, 123.1, 122.3, 112.6, 111.8, 64.8, 48.9, 32.8, 32.7, 25.4, 24.8, 24.7. MS (+EI): m/z (%) = 533 (10.5) [M+2+H]+, 531 (10.2) [M+H]+, 145 (100). Anal. Calcd for C29H27BrN2O3: C, 65.54; H, 5.12; N, 5.27. Found: C, 64.88; H, 5.09; N, 5.33.
  • 22 Ignacio JM, Macho S, Marcaccini S, Pepino R, Torroba T. Synlett 2005; 3051
  • 23 Han W.-W, Wu J.-L. Z. Kristallogr. NCS 2014; 229: 27