Synlett 2014; 25(20): 2879-2882
DOI: 10.1055/s-0034-1379365
letter
© Georg Thieme Verlag Stuttgart · New York

A Facile and Convenient Synthesis of (±)-Biotin via MgCl2/Et3N-Mediated C–C Coupling and Mitsunobu Reaction

Subhash P. Chavan*
Organic Chemistry Division, CSIR-NCL (National Chemical Laboratory), Dr. Homi Bhabha Road, Pune-411008, Maharashtra, India   Fax: +91(20)25902629   Email: [email protected]
,
Prakash N. Chavan
Organic Chemistry Division, CSIR-NCL (National Chemical Laboratory), Dr. Homi Bhabha Road, Pune-411008, Maharashtra, India   Fax: +91(20)25902629   Email: [email protected]
,
Pradeep B. Lasonkar
Organic Chemistry Division, CSIR-NCL (National Chemical Laboratory), Dr. Homi Bhabha Road, Pune-411008, Maharashtra, India   Fax: +91(20)25902629   Email: [email protected]
,
Lalit B. Khairnar
Organic Chemistry Division, CSIR-NCL (National Chemical Laboratory), Dr. Homi Bhabha Road, Pune-411008, Maharashtra, India   Fax: +91(20)25902629   Email: [email protected]
,
Appasaheb L. Kadam
Organic Chemistry Division, CSIR-NCL (National Chemical Laboratory), Dr. Homi Bhabha Road, Pune-411008, Maharashtra, India   Fax: +91(20)25902629   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 08 July 2014

Accepted after revision: 29 September 2014

Publication Date:
05 November 2014 (online)


Abstract

A synthesis of (±)-biotin is described starting from simple starting materials viz. cyclohexanone and amino malonic acid ester. The key steps involved are MgCl2/Et3N coupling of amino malonic acid ester derivative and acid chloride, Mitsunobu reaction, ozonolysis, Staudinger reduction, novel urea formation, and subsequent dibenzylation. This approach is economical and involves high-yielding steps and simple reaction conditions.

Supporting Information

 
  • References and Notes

    • 1a Kogl F, Tonnis B, Sey HZ. Physiol. Chem. 1936; 242: 443
    • 1b du Vigneoud V, Hofmann K, Melville DB, Gyorgy P. J. Biol. Chem. 1941; 140: 643
    • 1c Melville DB, Hofmann K, Hague ER, du Vigneaud V. J. Biol. Chem. 1942; 142: 615
    • 2a Harris SA, Wolf DE, Mozingo R, Anderson RC, Arth GE, Easton NR, Heyl D, Wilson AN, Folkers K. J. Am. Chem. Soc. 1944; 66: 1756
    • 2b Harris SA, Wolf DE, Mozingo R, Anderson RC, Arth GE, Easton NR, Heyl D, Wilson AN, Folkers K. J. Am. Chem. Soc. 1945; 67: 2098
  • 3 Wilcheck M, Bayer EA. Anal. Biochem. 1988; 171: 1

    • For the synthesis of biotin, see:
    • 4a De Clercq PJ. Chem. Rev. 1997; 97: 1755
    • 4b Seki M. Med. Res. Rev. 2006; 26: 434 ; and references cited therein
    • 5a Chen FE, Zhao JF, Xiong FJ, Xie B, Zhang P. Carbohydr. Res. 2007; 342: 2461
    • 5b Kale AS, Puranik VG, Deshmukh AR. A. S. Synthesis 2007; 1159
    • 5c Goldberg MW, Strenbach LH. US 2, 489235, 1949 ; Chem. Abstr. 1951, 45, 186g
    • 5d Harris SA, Wolf DE, Mozinco R, Anderson RC, Arth GE, Easton NR, Hely D, Wilson AN, Folkers K. J. Am. Chem. Soc. 1944; 60: 1756
    • 5e Bory S, Luche MJ, Moreau B, Lavielle S, Marquet A. Tetrahedron Lett. 1975; 827
    • 5f Lavielle S, Bory S, Moreau B, Luche J, Marquet A. J. Am. Chem. Soc. 1978; 100: 1558
    • 5g Ohrui H, Emoto S. Tetrahedron Lett. 1975; 16: 2765
    • 5h Wilson SR, Mao DT. J. Am. Chem. Soc. 1978; 100: 6291
    • 5i Ravindranathan T, Hiremath SV, Reddy DR, Rama Rao AV. Carbohydr. Res. 1984; 134: 332
    • 5j Poetsch E, Casutt M. Chimia 1987; 41: 148
    • 5k Turos E, Parvez M, Garigipati RS, Weinreb SM. J. Org. Chem. 1988; 53: 1116
    • 5l Matsuki K, Inoue H, Takeda M. Tetrahedron Lett. 1993; 34: 1167
    • 5m Kurimoto I, Mizuno M, Hirata N, Minami M. JP 06 263752, 1994 ; Chem. Abstr. 1995, 122, 81011s
    • 5n Chen FE, Huang YD, Fu H, Cheng Y, Zhang DM, Li YY, Peng ZZ. Synthesis 2000; 2004
    • 5o Xiong F, Chen X.-X, Liu Z.-Q, Chen F.-E. Tetrahedron Lett. 2010; 51: 3670
    • 6a Chavan SP, Lasonkar PB, Chavan PN. Tetrahedron: Asymmetry 2013; 24: 1473
    • 6b Chavan SP, Chittiboyina AG, Ravindranathan T, Kamat SK, Kalkote UR. J. Org. Chem. 2005; 70: 1901
    • 6c Chavan SP, Chittiboyina AG, Ramakrishna G, Tejwani RB, Ravindranathan T, Kamat SK, Rai B, Sivadasan L, Balakrishnan K, Ramalingam S, Deshpande VH. Tetrahedron 2005; 61: 9273
    • 6d Chavan SP, Ramakrishna G, Gonnade RG. Bhadbhade M. M. Tetrahedron Lett. 2004; 45: 7307
    • 6e Chavan SP, Tejwani RB, Ravindranathan T. J. Org. Chem. 2001; 66: 6197
    • 7a Hartung WH, Beaujon JH. R, Cocolas G. Org. Synth. 1960; 40: 24 ; Org. Synth. Coll. Vol. V 1973, 5, 376
    • 7b Vilsmeier A, Haack A. Ber. Dtsch. Chem. Ges. 1927; 60: 119
    • 7c Bal BS, Childers WE, Pinnick HW. Tetrahedron 1981; 37: 2091
  • 8 Krysan DJ. Tetrahedron Lett. 1996; 37: 3303
  • 9 Data for Compound 4 Rf = 0.6 (PE–EtOAc = 70:30). 1H NMR (200 MHz, CDCl3 + CCl4): δ = 7.40–7.26 (m, 5 H), 5.99 (d, J = 7.7 Hz, 1 H), 5.66 (d, J = 7.8 Hz, 1 H), 5.12 (s, 2 H), 4.23 (q, J = 7.1 Hz, 2 H), 2.59–2.21 (m, 4 H), 1.83–1.52 (m, 4 H), 1.28 (t, J = 7.1 Hz, 3 H). 13C NMR (50 MHz, CDCl3 + CCl4): δ = 195.2, 165.9, 155.3, 134.5, 133.2, 128.5, 128.0, 127.8, 67.1, 62.6, 62.3, 34.0, 28.2, 23.0, 21.2, 14.0. IR (CHCl3): νmax = 2937, 2866, 1728, 1716, 1699, 1653, 1502, 1330 cm–1. ESI-HRMS: m/z calcd for C19H22ClNO5Na: 402.1079 [M + Na]+; found: 402.1074.
  • 10 Karjalainen OK, Koskinen AM. P. Org. Biomol. Chem. 2012; 10: 4311 ; and references cited therein
  • 11 Marshall JA, Beaudoin S. J. Org. Chem. 1996; 61: 581
  • 12 Harris BD, Joullie MM. Tetrahedron 1988; 44: 3489
  • 13 Green JE, Bender DM, Jackson S, O’Donnell MJ, McCarthy JR. Org. Lett. 2009; 11: 807
  • 14 Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
  • 15 Data for Compound 3 Rf = 0.7 (PE–EtOAc = 75:25). 1H NMR (400MHz, CDCl3 + CCl4): δ = 7.43–7.28 (m, 5 H), 5.39–5.23 (m, 3 H), 4.40–4.14 (m, 5 H), 2.48–2.36 (m, 2 H), 1.98 (br s, 2 H), 2.06–1.91 (m, 2 H), 1.79–1.60 (m, 4 H), 1.34 (t, J = 7.2 Hz, 3 H), 1.25 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3 + CCl4): δ = 168.5, 150.9, 150.5, 147.3, 134.7, 131.6, 129.4, 128.5, 128.4, 127.9, 68.8, 63.2, 62.4, 57.9, 55.4, 33.9, 24.1, 23.3, 21.7, 14.2, 14.0. IR (CHCl3): νmax = 2983, 2938, 1817, 1750, 1728, 1661, 1370, 1024 cm–1. ESI-HRMS: m/z calcd for C23H27ClN2O7Na: 510.1399 [M + Na]+; found: 501.1400.
  • 16 Narina SV, Kumar TV, Gorge S, Sudalai A. Tetrahedron Lett. 2007; 48: 65
  • 17 Appel R. Angew. Chem., Int. Ed. Engl. 1975; 14: 801
  • 18 Data for Compound 16 Rf = 0.5 (PE–EtOAc = 60:40); mp 87–89 °C. 1H NMR (400 MHz, CDCl3 + CCl4): δ = 7.34–7.21 (m, 10 H), 4.59 (d, J = 6.0 Hz, 1 H), 4.52 (d, J = 14.7 Hz, 1 H), 4.12–3.97 (m, 1 H), 4.10–4.00 (m, 2 H), 3.52–3.45 (m, 1 H), 3.14–3.07 (m, 1 H), 2.22 (t, J = 6.2 Hz, 2 H), 1.77–1.68 (m, 1 H), 1.58–1.49 (m, 3 H), 1.42–1.33 (m, 1 H), 1.20 (dd, J = 6.4, 13.3 Hz, 1 H), 0.84 (s, 9 H), –0.01 (s, 3 H), –0.03 (s, 3 H). 13C NMR (100 MHz, CDCl3 + CCl4): δ = 160.3, 137.3, 131.1, 130.1, 128.8, 128.4, 128.3, 127.3, 127.2, 62.5, 57.6, 56.5, 46.8, 46.1, 34.2, 25.8, 23.6, 21.6, 18.2., –5.4, –5.5. IR (CHCl3): νmax = 3030, 2930, 1698, 1657, 1448, 1357, 1119 cm–1. ESI-HRMS: m/z calcd for C30H41ClN2O2SiNa: 547.2518 [M + Na]+; found: 547.2523.
  • 19 The urea 16 is the same intermediate which we recently reported in enantiopure form, by following an entirely different strategy for the synthesis of d-(+)-biotin.6a Based on this, the stereochemistry of other major compounds have been deduced and depicted.
    • 20a Baxter RL, Camp DJ, Coutts A, Shaw N. J. Chem. Soc., Perkin Trans. 1 1992; 255
    • 20b Effenberger F, Gaupp S. Tetrahedron: Asymmetry 1999; 10: 1765