Synlett 2014; 25(20): 2873-2878
DOI: 10.1055/s-0034-1379471
letter
© Georg Thieme Verlag Stuttgart · New York

Exploring Glycosylation Reactions under Continuous-Flow Conditions

Damiano Cancogni
Dipartimento di Chimica and ISTM-CNR, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy   Fax: +390250314072   Email: luigi.lay@unimi.it
,
Luigi Lay*
Dipartimento di Chimica and ISTM-CNR, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy   Fax: +390250314072   Email: luigi.lay@unimi.it
› Author Affiliations
Further Information

Publication History

Received: 25 June 2014

Accepted after revision: 16 September 2014

Publication Date:
17 October 2014 (online)


Abstract

The industrial development of carbohydrate-based drugs is greatly thwarted by the typical challenges inherent in oligosaccharide synthesis. The practical advantages of continuous-flow synthesis in microreactors (high reproducibility, easy scalability, and fast reaction optimization) may offer an effective support to make carbohydrates more attractive targets for drug-discovery processes. Here we report a systematic exploration of the glycosylation reaction carried out under microfluidic conditions. Trichloroacetimidates and thioglycosides have been investigated as glycosyl donors, using both primary and secondary acceptors. Each microfluidic glycosylation has been compared with the corresponding batch reaction, in order to highlight advantages and drawbacks of microreactors technology. As a significant example of multistep continuous-flow synthesis, we also describe the preparation of a trisaccharide by means of two consecutive glycosylations performed in interconnected microreactors.

Supporting Information

 
  • References and Notes

    • 1a Varki A. Glycobiology 1993; 3: 97
    • 1b Dwek RA. Chem. Rev. 1996; 96: 683
    • 2a Sharon N. Biochim. Biophys. Acta 2006; 1760: 527
    • 2b Balzarini J. Nat. Rev. Microbiol. 2007; 5: 583
    • 2c Ernst B, Magnani JL. Nat. Rev. Drug Discovery 2009; 8: 661
  • 3 Sofia M. J. Med. Chem. Res. 1998; 8: 362
    • 4a Toshima K, Tatsuta K. Chem. Rev. 1993; 93: 1503
    • 4b Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc. 1998; 120: 13291
    • 4c Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611
    • 4d Galonić DP, Gin DY. Nature (London, U.K.) 2007; 446: 1000
    • 4e Lepenies B, Yin J, Seeberger PH. Curr. Opin. Chem. Biol. 2010; 14: 404
    • 4f Mydock LK, Demchenko AV. Org. Biomol. Chem. 2010; 8: 497
    • 5a Pennemann H, Watts P, Haswell SJ, Hessel V, Löwe H. Org. Process Res. Dev. 2004; 8: 422
    • 5b Watts P. Curr. Opin. Drug Discovery Dev. 2004; 7: 807
    • 5c Dittrich PS, Manz A. Nat. Rev. Drug Discovery 2006; 5: 210
    • 5d Wheeler RC, Benali O, Deal M, Farrant E, MacDonald SJ. F, Warrington BH. Org. Process Res. Dev. 2007; 11: 704
    • 5e Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT. Chem. Rev. 2007; 107: 2300
    • 5f Sahoo HR, Kralj JG, Jensen KF. Angew. Chem. Int. Ed. 2007; 46: 5704
    • 5g Geyer K, Gustafsson T, Seeberger PH. Synlett 2009; 2382
    • 5h Noël T, Buchwald SL. Chem. Soc. Rev. 2011; 40: 5010
    • 5i Anderson NG. Org. Process Res. Dev. 2012; 16: 852
    • 5j Hartman RL, McMullen JP, Jensen KF. Angew. Chem. Int. Ed. 2011; 50: 7502
    • 6a Ratner DM, Murphy ER, Jhunjhunwala M, Snyder DA, Jensen KF, Seeberger PH. Chem. Commun. 2005; 578
    • 6b Geyer K, Codée JD. C, Seeberger PH. Chem. Eur. J. 2006; 12: 8434
    • 6c Geyer K, Seeberger PH. Helv. Chim. Acta 2007; 90: 395
    • 6d Carrel FR, Geyer K, Codée JD. C, Seeberger PH. Org. Lett. 2007; 9: 2285
    • 6e Fukase K, Takashina M, Hori Y, Tanaka D, Tanaka K, Kusumoto S. Synlett 2005; 2342
    • 6f Tanaka K, Mori Y, Fukase K. J. Carbohydr. Chem. 2009; 28: 1
    • 6g Tanaka K, Miyagawa T, Fukase K. Synlett 2009; 1571
    • 6h Tanaka K, Fukase K. Beilstein J. Org. Chem. 2009; 5: 40
    • 6i Tanaka K, Fujii Y, Tokimoto H, Mori Y, Tanaka SI, Bao G, Siwu ER. O, Nakayabu A, Fukase K. Chem. Asian J. 2009; 4: 574
    • 6j Tanaka K, Fukase K. Org. Process Res. Dev. 2009; 13: 983
  • 7 Oberbillig T, Löwe H, Hoffmann-Röder A. J. Flow Chem. 2012; 2: 83
  • 8 Wojcik F, O’Brien AG, Götze S, Seeberger PH, Hartmann L. Chem. Eur. J. 2013; 19: 3090
    • 9a Webb D, Jamison TF. Chem. Sci. 2010; 1: 675
    • 9b McQuade DT, Seeberger PH. J. Org. Chem. 2013; 78: 6384 ; and references cited therein
    • 10a Sniady A, Bedore MW, Jamison TF. Angew. Chem. Int. Ed. 2011; 50: 2155
    • 10b Shen B, Jamison TF. Org. Lett. 2012; 14: 3348
  • 11 This work is a major part of the PhD thesis of Damiano Cancogni (2014).
    • 12a Boonyarattanakalin S, Liu X, Michieletti M, Lepenies B, Seeberger PH. J. Am. Chem. Soc. 2008; 130: 19791
    • 12b Kalikanda J, Li Z. Carbohydr. Res. 2011; 346: 2380
    • 12c Gangadharmath UB, Demchenko AD. Synlett 2004; 2191
    • 13a Gaikwad NW, Hwang GS, Goldberg IH. Org. Lett. 2004; 6: 4833
    • 13b Izumi M, Fukase K, Kusumoto S. Biosci. Biotechnol. Biochem. 2002; 66: 211
    • 13c Qiao L, Vederas JC. J. Org. Chem. 1993; 58: 3480
    • 13d Koch S, Schollmeyer D, Löwe H, Kunz H. Chem. Eur. J. 2013; 19: 7020
    • 14a Zhang F, Zhang W, Curran DP, Liu G. J. Org. Chem. 2009; 74: 2594
    • 14b France RR, Compton RG, Davis BG, Fairbanks AJ, Rees NV, Wadhawan JD. Org. Biomol. Chem. 2004; 2: 2195
    • 14c Lu LD, Shie CR, Kulkarni SS, Pan GR, Lu XA, Hung SC. Org. Lett. 2006; 8: 5995
  • 15 Saito K, Ueoka K, Matsumoto K, Suga S, Nokami T, Yoshida J. Angew. Chem. Int. Ed. 2011; 50: 5153
    • 16a Ley SV, Baxendale IR, Bream RN, Jackson PS, Leach AG, Longbottom DA, Nesi M, Scott JS, Storer IR, Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000; 3815
    • 16b Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK. Chem. Commun. 2006; 2566
    • 16c Baxendale IR, Ley SV, Mansfield AC, Smith CD. Angew. Chem. Int. Ed. 2009; 48: 4017
    • 16d Baxendale IR, Schou SC, Sedelmeier J, Ley SV. Chem. Eur. J. 2010; 16: 89
    • 16e Martin LJ, Marzinzik AL, Ley SV, Baxendale IR. Org. Lett. 2011; 13: 320
    • 16f Smith CJ, Smith CD, Nikbin N, Ley SV, Baxendale IR. Org. Biomol. Chem. 2011; 9: 1927
    • 16g Smith CJ, Nikbin N, Ley SV, Lange H, Baxendale IR. Org. Biomol. Chem. 2011; 9: 1938
    • 16h Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849 ; and references cited therein
    • 17a Bogdan AR, Poe SL, Kubis DC, Broadwater SJ, McQuade DT. Angew. Chem. Int. Ed. 2009; 48: 8547
    • 17b Stazi F, Cancogni D, Turco L, Westerduin P, Bacchi S. Tetrahedron Lett. 2010; 51: 5385
    • 17c Kopetzki D, Lévesque F, Seeberger PH. Chem. Eur. J. 2013; 19: 5450
    • 18a Tiwari VK, Kumar A, Schmidt RR. Eur. J. Org. Chem. 2012; 15: 2945
    • 18b Schmidt RR, Effenberger G. Carbohydr. Res. 1987; 171: 59
    • 18c Zhang Z, Zong C, Song G, Lv G, Chun Y, Wang P, Ding N, Li Y. Carbohydr. Res. 2010; 345: 750
  • 19 Tanaka SI, Goi T, Tanaka K, Fukase K. J. Carbohydr. Chem. 2007; 26: 369