Synthesis 2015; 47(09): 1195-1209
DOI: 10.1055/s-0034-1379903
review
© Georg Thieme Verlag Stuttgart · New York

Difunctionalization of Acrylamides through C–H Oxidative Radical Coupling: New Approaches to Oxindoles

Ren-Jie Song
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: [email protected]
,
Yu Liu
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: [email protected]
,
Ye-Xiang Xie
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: [email protected]
,
Jin-Heng Li*
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 31 December 2014

Accepted after revision: 28 January 2015

Publication Date:
31 March 2015 (online)


Abstract

Oxindoles are an important class of heterocycles with unique biological activity that are found prevalently in numerous natural products and biologically active compounds. For these reasons, much attention has been given to the development of efficient methods for the preparation of such compounds. Traditionally, the practical approaches for the synthesis of oxindoles include the condensation of anilines with carbonyl compounds, such as diethyl ketomalonate, oxalyl chloride, or chloral hydrate, mediated by strong acids or bases. Recently, a step- and atom-economic C–H activation strategy was illustrated to access oxindoles through the difunctionalization of activated alkenes for these purposes. However, many of these transformations suffer from the cost of the transition-metal catalytic systems and/or limited substrate scope. In this review, we describe the recent studies of the difunctionalization of activated alkenes for the synthesis of diverse functionalized oxindoles that involves C–H oxidative radical coupling in the presence of an oxidant. These transformations are initiated either by the carbon radical resulting from the split of the carbon–hydrogen bond (1,2-dicarbofunctionalization) or by the carbon or heteroatom radical arising from the cleavage of the carbon–heteroatom (1,2-dicarbofunctionalization) or heteroatom–heteroatom bond (1,2-carboheterofunctionalization). Importantly, these C–H oxidative radical coupling transformations are generally performed with readily available oxidants and/or inexpensive iron or copper catalysts under neutral reaction conditions.

1 Introduction

2 Synthesis of Oxindoles via 1,2-Dicarbofunctionalization of Alkenes

2.1 1,2-Alkylarylation

2.2 1,2-Aryltrifluoromethylation

2.3 1,2-Carbonylarylation

3 Synthesis of Oxindoles via 1,2-Carboheterofunctionalization of Alkenes

3.1 1,2-Azidoarylation or 1,2-Arylnitration

3.2 1,2-Arylsulfonylation

3.2 1,2-Arylphosphorylation

4 Conclusion

 
  • References


    • For selected reviews and papers, see:
    • 1a Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 1b Emura T, Esaki T, Tachibana K, Shimizu M. J. Org. Chem. 2006; 71: 8559
    • 1c Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 1d Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 1e Shen K, Liu X, Lin L, Feng X. Chem. Sci. 2012; 3: 327
    • 1f Ohmatsu K, Ando Y, Ooi T. J. Am. Chem. Soc. 2013; 135: 18706

      For selected examples, see:
    • 2a Hennessy EJ, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 12084
    • 2b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 2c Jia Y.-X, Kündig EP. Angew. Chem. Int. Ed. 2009; 48: 1636
    • 2d Piou T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561

      For selected reviews on difunctionalization of alkenes, see:
    • 3a Kolb HC, van Nieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 3b Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 3c Jacques B, Muniz K In Catalyzed Carbon-Heteroatom Bond Formation . Yudin AK. Wiley–VCH; Weinheim: 2010: 119
    • 3d McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 3e Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
  • 4 Evans P, Grigg R, Ramzan MI, Sridharan V, York M. Tetrahedron Lett. 1999; 40: 3021
  • 5 Anwar U, Casaschi A, Grigg R, Sansano JM. Tetrahedron 2001; 57: 1361
  • 6 Pinto A, Jia Y, Neuville L, Zhu J. Chem. Eur. J. 2007; 13: 961
  • 7 Jaegli SP, Dufour J, Wei H.-L, Piou T, Duan X.-H, Vors J.-P, Neuville L, Zhu J. Org. Lett. 2010; 12: 4498
    • 8a Wu T, Mu X, Liu G. Angew. Chem. Int. Ed. 2011; 50: 12578
    • 8b Mu X, Wu T, Wang H.-Y, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 9a Murakami M, Ito Y In Topics in Organometallic Chemistry . Vol. 3. Murai S. Springer-Verlag; New York: 1999: 97-129
    • 9b Rybtchinski B, Milstein D. Angew. Chem. Int. Ed. 1999; 38: 871
    • 9c Sundermann A, Uzan O, Milstein D, Martin JM. L. J. Am. Chem. Soc. 2000; 122: 7095
    • 9d Gao X, Woo SK, Krische MJ. J. Am. Chem. Soc. 2013; 135: 4223
    • 9e Del Valle DJ, Krische MJ. J. Am. Chem. Soc. 2013; 135: 10986
    • 9f Barroso R, Valencia RA, Cabal M.-P, Valdés C. Org. Lett. 2014; 16: 2264
  • 10 Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
    • 11a Meng Y, Guo L.-N, Wang H, Duan X.-H. Chem. Commun. 2013; 49: 7540
    • 11b Zhou Z.-Z, Hua H.-L, Luo J.-Y, Chen Z.-S, Zhou P.-X, Liu X.-Y, Liang Y.-M. Tetrahedron 2013; 69: 10030
  • 12 Zhou M.-B, Wang C.-Y, Song R.-J, Liu Y, Wei W.-T, Li J.-H. Chem. Commun. 2013; 49: 10817
  • 13 Zhou S.-L, Guo L.-N, Wang H, Duan X.-H. Chem. Eur. J. 2013; 19: 12970
  • 14 Li Z.-J, Zhang Y, Zhang L.-Z, Liu Z.-Q. Org. Lett. 2014; 16: 382
  • 15 Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2013; 49: 10370
  • 16 Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2013; 15: 5254
  • 17 Wu T, Zhang H, Liu G. Tetrahedron 2012; 68: 5229
  • 18 Xie J, Xu P, Li H, Xue Q, Jin H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 5672
    • 19a Fan J.-H, Zhou M.-B, Liu Y, Wei W.-T, Ouyang X.-H, Song R.-J, Li J.-H. Synlett 2014; 25: 657
    • 19b Dai Q, Yu J, Jiang Y, Guo S, Yang H, Cheng J. Chem. Commun. 2014; 50: 3865
    • 20a Smart BE. Chem. Rev. 1996; 96: 1555
    • 20b Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 20c Muller CK, Faeh C, Diederich F. Science 2007; 317: 1881
    • 20d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 20e Wang F, Wang D.-H, Mu X, Chen P.-H, Liu G.-S. J. Am. Chem. Soc. 2014; 136: 10202
    • 21a Egami H, Shimizu R, Sodeoka M. J. Fluorine Chem. 2013; 152: 51
    • 21b Li L, Deng M, Zheng S.-C, Xiong Y.-P, Tan B, Liu X.-Y. Org. Lett. 2014; 16: 504
    • 21c Yang F, Klumphu P, Liang Y.-M, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 21d Fu W, Xu F, Fu Y, Xu C, Li S, Zou D. Eur. J. Org. Chem. 2014; 709
    • 21e Wei W, Wen J, Yang D, Liu X, Guo M, Dong R, Wang H. J. Org. Chem. 2014; 79: 4225
    • 21f Lu Q.-Q, Liu C, Peng P, Liu Z.-L, Fu L.-J, Huang J.-G, Lei A.-W. Asian J. Org. Chem. 2014; 3: 273
  • 22 Liu J.-D, Zhuang S.-B, Gui Q.-W, Chen X, Yang Z.-Y, Tan Z. Eur. J. Org. Chem. 2014; 3196
  • 23 Wang J.-Y, Zhang X, Bao Y, Xu Y.-M, Cheng X.-F, Wang X.-S. Org. Biomol. Chem. 2014; 12: 5582
    • 24a Kong W.-Q, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 24b Kong W.-Q, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 24c Fuentes N, Kong W.-Q, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964
    • 25a Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 3296
    • 25b Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
    • 25c Tang B.-X, Song R.-J, Li J.-H. J. Am. Chem. Soc. 2010; 132: 8900
    • 25d Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011; 13: 3258
  • 26 Zhou M.-B, Song R.-J, Ouyang X.-H, Liu Y, Wei W.-T, Deng G.-B, Li J.-H. Chem. Sci. 2013; 4: 2690
  • 27 Ouyang X.-H, Song R.-J, Li J.-H. Eur. J. Org. Chem. 2014; 3395
  • 28 Wang H, Guo L.-N, Duan X.-H. Adv. Synth. Catal. 2013; 355: 2222
    • 29a Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
    • 29b Wang G, Wang S, Wang J, Chen S.-Y, Yu X.-Q. Tetrahedron 2014; 70: 3466
  • 30 Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 31a Wei X.-H, Li Y.-M, Zhou A.-X, Yang T.-T, Yang S.-D. Org. Lett. 2013; 15: 4158
    • 31b Yuan Y, Shen T, Wang K, Jiao N. Chem. Asian J. 2013; 8: 2932
  • 32 Qiu J, Zhang R.-H. Org. Biomol. Chem. 2014; 12: 4329
    • 34a Li Y.-M, Wei X.-H, Li X.-A, Yang S.-D. Chem. Commun. 2013; 49: 11701
    • 34b Li Y.-M, Shen Y, Chang K.-J, Yang S.-D. Tetrahedron Lett. 2014; 55: 2119
  • 35 Shen T, Yuan Y, Jiao N. Chem. Commun. 2014; 50: 554
    • 36a Napier C, Stewart M, Melrose H, Hopkins B, McHarg A, Wallis R. Eur. J. Pharmacol. 1999; 375: 61
    • 36b Petrov KG, Zhang Y, Carter M, Cockerill GS, Dickerson S, Gauthier CA, Guo Y, Mook RA, Rusnak DW, Walker AL, Wood ER, Lackey KE. Bioorg. Med. Chem. Lett. 2006; 16: 4686
  • 37 Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
  • 38 Tian Q, He P, Kuang C. Org. Biomol. Chem. 2014; 12: 6349
  • 39 Wei W, Wen J, Yang D, Du J, You J, Wang H. Green Chem. 2014; 16: 2988
  • 40 Yin F, Wang X.-S. Org. Lett. 2014; 16: 1128
    • 41a Van der Jeught S, Stevens CV. Chem. Rev. 2009; 109: 2672
    • 41b George A, Veis A. Chem. Rev. 2008; 108: 4670
    • 41c Bialy L, Waldmann H. Angew. Chem. Int. Ed. 2005; 44: 3814
    • 41d Alexandre F, Amador A, Bot S, Caillet C, Convard T, Jakubik J, Musiu C, Poddesu B, Vargiu L, Liuzzi M, Roland A, Seifer M, Standring D, Storer R, Dousson CB. J. Med. Chem. 2011; 54: 392
  • 42 Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
  • 43 Li Y.-M, Shen Y, Chang K.-J, Yang S.-D. Tetrahedron 2014; 70: 1991