Synthesis 2016; 48(02): 184-199
DOI: 10.1055/s-0035-1560360
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Heterobiaryls Featuring 1,4 N···S Inter-Ring Interactions

David Tilly
Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1 – CNRS, Bâtiment 10A, Case 1003, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes, France   Email: floris.chevallier@univ-rennes1.fr   Email: florence.mongin@univ-rennes1.fr
,
Floris Chevallier*
Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1 – CNRS, Bâtiment 10A, Case 1003, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes, France   Email: floris.chevallier@univ-rennes1.fr   Email: florence.mongin@univ-rennes1.fr
,
Florence Mongin*
Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1 – CNRS, Bâtiment 10A, Case 1003, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes, France   Email: floris.chevallier@univ-rennes1.fr   Email: florence.mongin@univ-rennes1.fr
› Author Affiliations
Further Information

Publication History

Received: 27 August 2015

Accepted after revision: 05 October 2015

Publication Date:
03 November 2015 (online)


Abstract

Because of its low-lying σ* orbitals, the C–S bond can interact with electron donors. In this short review, our goal is to focus on intramolecular interactions between bivalent sulfur and basic nitrogen atoms. In particular, we will consider the synthesis of selected heterobiaryls for which 1,4 N···S inter-ring interactions can be identified from X-ray diffraction data. Finally, we will briefly touch on the use of such conformational preferences in various applications.

 1 Introduction

 2 Cross-Coupling with C–C Bond Formation

 3 Cross-Coupling with C–N Bond Formation

 4 Nucleophilic Addition to Azine Followed by Oxidation

 5 Multicomponent Reactions

 6 Heterobiaryl Formation by Azine Building

 7 Heterobiaryl Formation by Building of the Sulfur-Containing Heterocycle

 8 Cycloaddition Reactions

 9 Other Syntheses

10 Conclusion

 
  • References

    • 1a Murray JS, Lane P, Politzer P. Int. J. Quantum Chem. 2008; 108: 2770

    • For an excellent perspective review on the topic and its impact on drug design, see:
    • 1b Beno BR, Yeung K.-S, Bartberger MD, Pennington LD, Meanwell NA. J. Med. Chem. 2015; 58: 4383 ; and references cited therein
    • 2a Brameld KA, Kuhn B, Reuter DC, Stahl M. J. Chem. Inf. Model. 2008; 48: 1
    • 2b Schärfer C, Schulz-Gasch T, Ehrlich H.-C, Guba W, Rarey M, Stahl M. J. Med. Chem. 2013; 56: 2016
    • 3a Dudkin VY. Chem. Heterocycl. Compd. (Engl. Transl.) 2012; 48: 27
    • 3b Iwaoka M, Isozumi N. Molecules 2012; 17: 7266
    • 3c Nagao Y. Heterocycles 2013; 87: 1
  • 4 Bondi A. J. Phys. Chem. 1964; 68: 441
    • 5a Karikomi M, Kitamura C, Tanaka S, Yamashita Y. J. Am. Chem. Soc. 1995; 117: 6791
    • 5b Özen AS, Atilgan C, Sonmez G. J. Phys. Chem. C 2007; 111: 16362
    • 5c Fukumoto S, Nakashima T, Kawai T. Angew. Chem. Int. Ed. 2011; 50: 1565
  • 6 Bolduc A, Dufresne S, Hanan GS, Skene WG. Can. J. Chem. 2010; 88: 236
    • 7a Munakata M, Han J, Nabei A, Kuroda-Sowa T, Maekawa M, Suenaga Y, Gunjima N. Inorg. Chim. Acta 2006; 359: 4281
    • 7b Liu G, Liu M, Pu S, Fan C, Cui S. Tetrahedron 2012; 68: 2267
    • 7c Li H, Liu G, Pu S, Chen B. Dyes Pigm. 2013; 99: 812
  • 8 Enguehard C, Hervet M, Allouchi H, Debouzy J.-C, Leger J.-M, Gueiffier A. Synthesis 2001; 595
  • 9 Mkhalid IA. I, Conventry DN, Albesa-Jove D, Batsanov AS, Howard JA. K, Perutz RN, Marder TB. Angew. Chem. Int. Ed. 2006; 45: 489
  • 10 Field JS, Haines RJ, Lakoba EI, Sosabowski MH. J. Chem. Soc., Perkin Trans. 1 2001; 3352
  • 11 Chevallier F, Charlot M, Katan C, Mongin F, Blanchard-Desce M. Chem. Commun. 2009; 692
  • 12 Yasuda T, Sakai Y, Aramaki S, Yamamoto T. Chem. Mater. 2005; 17: 6060
  • 13 Ackers B, Blake AJ, Hill SJ, Hubberstey P. Acta Crystallogr., Sect. C 2002; 58: o640
  • 14 Rocha SV, Finney NS. J. Org. Chem. 2013; 78: 11255
  • 15 Getmanenko YA, Kang S.-W, Shakya N, Pokhrel C, Bunge SD, Kumar S, Ellman BD, Twieg RJ. J. Mater. Chem. C 2014; 2: 256
    • 16a Pu S, Zheng C, Sun Q, Liu G, Fan C. Chem. Commun. 2013; 49: 8036

    • For similar reactions, see also:
    • 16b Kojima T, Nishida J.-i, Tokito S, Tada H, Yamashita Y. Chem. Commun. 2007; 1430
    • 16c Trita AS, Roisnel T, Mongin F, Chevallier F. Org. Lett. 2013; 15: 3798
  • 17 For similar results, see also: Dienes Y, Durben S, Kárpáti T, Neumann T, Englert U, Nyulászi L, Baumgartner T. Chem. Eur. J. 2007; 13: 7487
  • 18 Branowska D, Siuchta O, Karczmarzyk Z, Wysocki W, Wolińska E, Mojzych M, Kawęcki R. Tetrahedron Lett. 2011; 52: 7054
  • 19 Bouffard J, Eaton RF, Müller P, Swager TM. J. Org. Chem. 2007; 72: 10166
  • 20 McEntee GJ, Vilela F, Skabara PJ, Anthopoulos TD, Labram JG, Tierney S, Harrington RW, Clegg W. J. Mater. Chem. 2011; 21: 2091

    • For other structures based on thiophenes and azoles prepared by Stille coupling, see:
    • 21a Arsenyan P, Ikaunieks M, Belyakov S. Tetrahedron Lett. 2007; 48: 961
    • 21b Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S. J. Am. Chem. Soc. 2013; 135: 10322
    • 21c Getmanenko YA, Fonari M, Risko C, Sandhu B, Galán E, Zhu L, Tongwa P, Hwang DK, Singh S, Wang H, Tiwari SP, Loo Y.-L, Brédas J.-L, Kippelen B, Timofeeva T, Marder SR. J. Mater. Chem. C 2013; 1: 1467
  • 22 Pang H, Skabara PJ, Crouch DJ, Duffy W, Heeney M, McCulloch I, Coles SJ, Horton PN, Hursthouse MB. Macromolecules 2007; 40: 6585
  • 23 Liu B, Huang Y, Lan J, Song F, You J. Chem. Sci. 2013; 4: 2163
    • 24a Han W, Mayer P, Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 2178

    • For similar reactions, see also:
    • 24b Xi P, Yang F, Qin S, Zhao D, Lan J, Gao G, Hu C, You J. J. Am. Chem. Soc. 2010; 132: 1822
  • 25 Hedidi M, Bentabed-Ababsa G, Derdour A, Roisnel T, Dorcet V, Chevallier F, Picot L, Thiéry V, Mongin F. Bioorg. Med. Chem. 2014; 22: 3498
    • 26a Nagaradja E, Chevallier F, Roisnel T, Dorcet V, Halauko YS, Ivashkevich OA, Matulis VE, Mongin F. Org. Biomol. Chem. 2014; 1475

    • For a synthesis of 1-(2-benzothiazolyl)benzotriazole by free-radical intramolecular cyclative cleavage of the benzotriazole ring in the presence of (TMS)3SiH and AIBN, see:
    • 26b Kumar D, Mishra BB, Tiwari VK. J. Org. Chem. 2014; 79: 251
    • 27a Hu B, Geng J, Zhang L, Huang W. J. Solid State Chem. 2014; 215: 102

    • For a pyrazole–thiophene structure featuring an N–N–C–S fragment with a 1,4 N···S inter-ring interaction, see:
    • 27b Arsenyan P, Paegle E, Petrenko A, Belyakov S. Tetrahedron Lett. 2010; 51: 5052
    • 28a Verbitskiy EV, Cheprakova EM, Slepukhin PA, Kodess MI, Ezhikova MA, Pervova MG, Rusinov GL, Chupakhin ON, Charushin VN. Tetrahedron 2012; 68: 5445
    • 28b Verbitskiy EV, Cheprakova EM, Zhilina EF, Kodess MI, Ezhikova MA, Pervova MG, Slepukhin PA, Subbotina JO, Schepochkin AV, Rusinov GL, Chupakhin ON, Charushin VN. Tetrahedron 2013; 69: 5164
    • 28c Verbitskiy EV, Cheprakova EM, Subbotina JO, Schepochkin AV, Slepukhin PA, Rusinov GL, Charushin VN, Chupakhin ON, Makarova NI, Metelitsa AV, Minkin VI. Dyes Pigm. 2014; 100: 201
    • 29a Mukhopadhyay C, Tapaswi PK, Butcher RJ. Tetrahedron Lett. 2010; 51: 1797

    • For multicomponent syntheses of pyridine–thiophene scaffolds, see also:
    • 29b Ray S, Brown M, Bhaumik A, Dutta A, Mukhopadhyay C. Green Chem. 2013; 15: 1910
    • 29c Chen J, Ni H, Chen W, Zhang G, Yu Y. Tetrahedron 2013; 69: 8069
    • 30a Zhang S, Sun X, Zhang W.-X, Xi Z. Chem. Eur. J. 2009; 15: 12608

    • See also:
    • 30b Sun X, Wang C, Li Z, Zhang S, Xi Z. J. Am. Chem. Soc. 2004; 126: 7172
    • 31a Zhang Y, Lai S.-L, Tong Q.-X, Chan M.-Y, Ng T.-W, Wen Z.-C, Zhang G.-Q, Lee S.-T, Kwong H.-L, Lee C.-S. J. Mater. Chem. 2011; 21: 8206

    • For imidazole– and benzimidazole–thiophenes, see:
    • 31b Kidwai M, Mothsra P, Bansal V, Somvanshi RK, Ethayathulla AS, Dey S, Singh TP. J. Mol. Catal. A: Chem. 2007; 265: 177
    • 31c Xia Y.-M, You J, Yang F.-K. J. Heterocycl. Chem. 2010; 48: 230
    • 31d Li Z, Lin Y, Xia J.-L, Zhang H, Fan F, Zeng Q, Feng D, Yin J, Liu SH. Dyes Pigm. 2011; 90: 245
    • 31e Inouchi T, Nakashima T, Toba M, Kawai T. Chem. Asian J. 2011; 6: 3020
    • 31f Inouchi T, Nakashima T, Kawai T. Asian J. Org. Chem. 2013; 2: 230
    • 31g Peng Y.-X, Tao T, Wang X.-X, Ma B.-B, Zhang K, Huang W. Chem. Asian J. 2014; 9: 3593
  • 32 Fridman N, Speiser S, Kaftory M. Cryst. Growth Des. 2006; 6: 1653
  • 33 Pan W.-l, Xu Y.-m, Sun Y, Shao C, Lin D.-y, Song H.-C. Anal. Sci.: X-Ray Struct. Anal. Online 2007; 23: x95
    • 34a Kantevari S, Patpi SR, Addla D, Putapatri SR, Sridhar B, Yogeeswari P, Sriram D. ACS Comb. Sci. 2011; 13: 427

    • See also:
    • 34b Patpi SR, Sridhar B, Tadikamalla PR, Kantevari S. RSC Adv. 2013; 3: 10251

    • For another synthesis of 7,8-dihydroquinolin-5(6H)-ones, see:
    • 34c Muylaert K, Jatczak M, Wuyts B, De Coen LM, Van Hecke K, Loones H, Keemink J, García D, Mangelinckx S, Annaert P, Stevens CV. Synlett 2014; 25: 1443
  • 35 Onodera G, Shimizu Y, Kimura J.-n, Kobayashi J, Ebihara Y, Kondo K, Sakata K, Takeuchi R. J. Am. Chem. Soc. 2012; 134: 10515
  • 36 Cabarrocas G, Ventura M, Maestro M, Mahía J, Villalgordo JM. Tetrahedron: Asymmetry 2001; 12: 1851
    • 37a Tonzola CJ, Alam MM, Bean BA, Jenekhe SA. Macromolecules 2004; 37: 3554

    • For other Friedländer reactions giving quinoline–thiophenes, see:
    • 37b Choi H, Lee H, Kang Y, Kim E, Kang SO, Ko J. J. Org. Chem. 2005; 70: 8291
  • 38 Li A.-H, Ahmed E, Chen X, Cox M, Crew AP, Dong H.-Q, Jin M, Ma L, Panicker B, Siu KW, Steinig AG, Stolz KM, Tavares PA. R, Volk B, Weng Q, Werner D, Mulvihill MJ. Org. Biomol. Chem. 2007; 5: 61
  • 39 Marquise N, Bretel G, Lassagne F, Chevallier F, Roisnel T, Dorcet V, Halauko YS, Ivashkevich OA, Matulis VE, Gros PC, Mongin F. RSC Adv. 2014; 4: 19602
  • 40 Slodek A, Filapek M, Szafraniec G, Grudzka I, Pisarski WA, Malecki JG, Zur L, Grela M, Danikiewicz W, Krompiec S. Eur. J. Org. Chem. 2014; 2014: 5256

    • For examples, see:
    • 41a Gazit A, Yee K, Uecker A, Böhmer F.-D, Sjöblom T, Östman A, Waltenberger J, Golomb G, Banai S, Heinrich MC, Levitzki A. Bioorg. Med. Chem. 2003; 11: 2007
    • 41b Crundwell G, Stacy V. Acta Crystallogr. Sect. E: Struct. Rep. Online 2005; 61: o3159
  • 42 For example, see: Liu Y, Zhang F, He C, Wu D, Zhuang X, Xue M, Liu Y, Feng X. Chem. Commun. 2012; 48: 4166
    • 43a Crundwell G, Linehan J, Updegraff III JB, Zeller M, Hunter AD. Acta Crystallogr. Sect. E: Struct. Rep. Online 2004; 60: o656

    • See also:
    • 43b Crundwell G, Sayers D, Herron SR, Kantardjieff KA. Acta Crystallogr. Sect. E: Struct. Rep. Online 2003; 59: o314
    • 44a Ramanjulu JM, DeMartino MP, Lan Y, Marquis R. Org. Lett. 2010; 12: 2270

    • For other pyrimidine–thiophene syntheses by diazine formation, see:
    • 44b Ioachim E, Medlycott EA, Skene WG, Hanan GS. Polyhedron 2007; 26: 4929
    • 44c Flores AF. C, Flores DC, Vicenti JR. de M, Campos PT. Acta Crystallogr. Sect. E: Struct. Rep. Online 2014; 70: o789
    • 45a Troisi L, Ronzini L, Granito C, Pindinelli E, Troisi A, Pilati T. Tetrahedron 2006; 62: 12064

    • Concerning pyrimidine-thiazole compounds, see for example:
    • 45b Li HB, Shi HB, Hu WX. Acta Crystallogr. Sect. E: Struct. Rep. Online 2011; 67: o260
    • 45c McIntyre NA, McInnes C, Griffiths G, Barnett AL, Kontopidis G, Slawin AM. Z, Jackson W, Thomas M, Zheleva DI, Wang S, Blake DG, Westwood NJ, Fischer PM. J. Med. Chem. 2010; 53: 2136
  • 46 Sušnik MP, Schnürch M, Mihovilovic MD, Mereiter K, Stanetty P. Monatsh. Chem. 2009; 140: 423
  • 47 Zhang Y.-B, Wang X.-L, Liu W, Yang Y.-S, Tang J.-F, Zhu H.-L. Bioorg. Med. Chem. 2012; 20: 6356
  • 48 Rahanyan N, Linden A, Baldridge KK, Siegel JS. Org. Biomol. Chem. 2009; 7: 2082
  • 49 Rahanyan N, Duttwyler S, Linden A, Baldridge KK, Siegel JS. Dalton Trans. 2014; 43: 11027
    • 50a Harrington RW, Stanforth SP. Tetrahedron Lett. 2012; 53: 2111

    • For pyrazole–thiophenes, see also:
    • 50b Sun H, Liu L, Wu D, Jia D, Guo J. New J. Chem. 2013; 37: 2351
  • 51 Shi B, Blake AJ, Campbell IB, Judkins BD, Moody CJ. Chem. Commun. 2009; 3291
  • 52 Chang Y.-C, Chen Y.-D, Chen C.-H, Wen Y.-S, Lin JT, Chen H.-Y, Kuo M.-Y, Chao I. J. Org. Chem. 2008; 73: 4608
    • 53a Nanos JI, Kampf JW, Curtis MD, Gonzalez L, Martin DC. Chem. Mater. 1995; 7: 2232
    • 53b Yamamoto T, Suganuma H, Maruyama T, Inoue T, Muramatsu Y, Arai M, Komarudin D, Ooba N, Tomaru S, Sasaki S, Kubota K. Chem. Mater. 1997; 9: 1217
  • 54 Liu L, Lam Y.-W, Wong W.-Y. J. Organomet. Chem. 2006; 691: 1092
  • 55 Mamada M, Nishida J.-i, Kumaki D, Tokito S, Yamashita Y. Chem. Mater. 2007; 19: 5404
    • 56a Mitschke U, Debaerdemaeker T, Bäuerle P. Eur. J. Org. Chem. 2000; 425

    • See also:
    • 56b Mitschke U, Osteritz EM, Debaerdemaeker T, Sokolowski M, Bäuerle P. Chem. Eur. J. 1998; 4: 2211
    • 56c Li H, Kang S, Xing Z, Zeng H, Wang H. Dyes Pigm. 2008; 80: 163
    • 56d Huang P.-H, Shen J.-Y, Pu S.-C, Wen Y.-S, Lin JT, Chou P.-T, Yeh M.-CP. J. Mater. Chem. 2006; 16: 850
    • 57a Amari C, Pelizzi C, Pelizzi G, Predieri G, Sartori G. Inorg. Chim. Acta 1994; 223: 97
    • 57b Iaroshenko VO, Volochnyuk DM, Kryvokhyzha NV, Martyloga A, Sevenard DV, Groth U, Brand J, Chernega AN, Shivanyuk AN, Tolmachev AA. Synthesis 2008; 2337
    • 57c Štefko M, Slavětínská L, Klepetářová B, Hocek M. J. Org. Chem. 2011; 76: 6619
    • 57d Fei Z, Zhu Y.-p, Liu M.-c, Jia F.-c, Wu A.-x. Tetrahedron Lett. 2013; 54: 1222
  • 58 Welch GC, Bakus RC, Teat SJ, Bazan GC. J. Am. Chem. Soc. 2013; 135: 2298
  • 59 Lin S, Wrobleski ST, Hynes JJr, Pitt S, Zhang R, Fan Y, Doweyko AM, Kish KF, Sack JS, Malley MF, Kiefer SE, Newitt JA, McKinnon M, Trzaskos J, Barrish JC, Dodd JH, Schieven GL, Leftheris K. Bioorg. Med. Chem. Lett. 2010; 20: 5864