Synlett 2016; 27(04): 486-492
DOI: 10.1055/s-0035-1560960
synpacts
© Georg Thieme Verlag Stuttgart · New York

Memory of Chirality (MOC) in Intramolecular sp3 C–H Amination

Yucheng Mu
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China   Email: shiz@nju.edu.cn
,
Chendan Zhu
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China   Email: shiz@nju.edu.cn
,
Zhuangzhi Shi*
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. of China   Email: shiz@nju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 09 September 2015

Accepted after revision: 05 October 2015

Publication Date:
20 November 2015 (online)

Abstract

‘Memory of chirality’ (MOC) is an important concept for the development of efficient asymmetric transformations. However, the phenomenon of MOC in C–H functionalization is still rare. In the past decades, three types of intramolecular C–H amination involving C–H insertion of metal nitrenoids, 1-aza-2-azoniaallene salts, and benzamides to construct N-heterocyclic compounds have been developed in Du Bois, Brewer, and our group, respectively. In these reactions, the formation of a C–N bond does not result in the loss of stereochemical information at the stereogenic center. Here, we discuss the scope, mechanism, and application of these transformations and provide a perspective on the development of this field in future.

 
  • References

  • 1 Kawabata T, Yahiro K, Fuji K. J. Am. Chem. Soc. 1991; 113: 9694
  • 2 Wanyoike GN, Onomura O, Maki T, Matsumura Y. Org. Lett. 2002; 4: 1875
  • 3 Zhao HW, Hsu DC, Carlier PR. Synthesis 2005; 1
    • 4a Seebach D, Wasmuth D. Angew. Chem., Int. Ed. Engl. 1981; 20: 297
    • 4b Seebach D, Sting AR, Hoffman M. Angew. Chem., Int. Ed. Engl. 1996; 35: 2708
    • 4c Kawabata T, Wirth T, Yahiro K, Suzuki H, Fuji K. J. Am. Chem. Soc. 1994; 116: 10809
    • 4d Kawabata T, Kawakami S. J. Am. Chem. Soc. 2003; 125: 13012
    • 4e Beagley B, Betts MJ, Pritchard RG, Schofield A, Stoodley RJ, Vohra S. Chem. Commun. 1991; 924
    • 4f Betts MJ, Pritchard RG, Schofield A, Stoodley RJ, Vohra S. J. Chem. Soc., Perkin Trans. 1 1999; 1067
    • 4g Gerona-Navarro G, Bonache MA, Herranz R, Gacía-López MT, González-Muñiz R. J. Org. Chem. 2001; 66: 3538
    • 4h Carlier PR, Zhao H, DeGuzman J, Lam PC.-H. J. Am. Chem. Soc. 2003; 125: 11482
    • 5a Schmalz H.-G, Koning CB. D, Berniche D, Siegel S, Pfletschinger A. Angew. Chem. Int. Ed. 1999; 38: 1620
    • 5b Buckmelter AJ, Kim AI, Rychnovsky SD. J. Am. Chem. Soc. 2000; 122: 9386
    • 5c Dalgard JE, Rychnovsky SD. Org. Lett. 2004; 6: 2713
    • 5d Curran DP, Liu W, Chen CH.-T. J. Am. Chem. Soc. 1999; 121: 11012
    • 5e Giese B, Wettstein P, Stähelin C, Barbosa F, Neuberger M, Zehnder M, Wessig P. Angew. Chem. Int. Ed. 1999; 38: 2586
    • 5f Griesbeck AG, Kramer W, Lex J. Angew. Chem. Int. Ed. 2001; 40: 577

      For some recent examples, see:
    • 6a Harris MR, Hanna LE, Greene MA, Moore CE, Jarvo ER. J. Am. Chem. Soc. 2013; 135: 3303
    • 6b Maity P, Shacklady-McAtee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 6c Tollefson EJ, Dawson DD, Osborne CA, Jarvo ER. J. Am. Chem. Soc. 2014; 136: 14951
    • 7a Jeffrey JL, Sarpong R. Chem. Sci. 2013; 4: 4092
    • 7b Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931
    • 7c Collet F, Lescot C, Dauban P. Chem. Soc. Rev. 2011; 40: 1926
    • 7d Chang JW. W, Ton TM. U, Chan PW. H. Chem. Rec. 2011; 11: 331
    • 8a Hofmann AW. Ber. Dtsch. Chem. Ges. 1883; 16: 558
    • 8b Hofmann AW. Ber. Dtsch. Chem. Ges. 1883; 18: 5
    • 8c Löffler K. Ber. Dtsch. Chem. Ges. 1910; 43: 2035
    • 9a Fan R, Pu D, Wen F, Wu J. J. Org. Chem. 2007; 72: 8994
    • 9b Chen H, Sanjaya S, Wang YF, Chiba S. Org. Lett. 2013; 15: 212
    • 9c Verma A, Patel S, Meenakshi Kumar A, Yadav A, Kumar S, Jana S, Sharma S, Prasad CD, Kumar S. Chem. Commun. 2015; 51: 1371
    • 9d Qin Q, Yu S. Org. Lett. 2015; 17: 1894
    • 10a Bisai A, West SP, Sarpong R. J. Am. Chem. Soc. 2008; 130: 7222
    • 10b Smith AC, Williams RM. Angew. Chem. Int. Ed. 2008; 47: 1736
    • 10c West SP, Bisai A, Lim AD, Narayan RR, Sarpong R. J. Am. Chem. Soc. 2009; 131: 11187
    • 10d Gruver JM, West SP, Collum DB, Sarpong R. J. Am. Chem. Soc. 2010; 132: 13212
    • 11a Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 11b Davies HM. L, Manning JR. Nature (London, U.K.) 2008; 451: 417
    • 12a Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
    • 12b Rice GT, White MC. J. Am. Chem. Soc. 2009; 131: 11707
    • 12c Neumann JJ, Rakshit S, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2009; 48: 6892
    • 12d Nadre ET, Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
    • 12e Yang M, Su B, Wang Y, Chen K, Jiang X, Zhang Y.-F, Zhang X.-S, Chen G, Cheng Y, Cao Z, Guo Q, Wang L, Shi Z.-J. Nat. Commun. 2014; 5: 4707
    • 12f Yang M.-Y, Jiang X.-Y, Shi Z.-J. Org. Chem. Front. 2015; 2: 51
  • 13 Yu X.-Q, Huang J.-S, Zhou X.-G, Che C.-M. Org. Lett. 2000; 2: 2233
  • 14 Dauban P, Sanière L, Tarrade A, Dodd RH. J. Am. Chem. Soc. 2001; 123: 7707
  • 15 Espino CG, Du Bois J. Angew. Chem. Int. Ed. 2001; 40: 598
  • 16 Espino CG, Wehn PM, Chow J, Du Bois J. J. Am. Chem. Soc. 2001; 123: 6935
  • 17 Wehn PM, Du Bois J. J. Am. Chem. Soc. 2002; 124: 12950
  • 18 Hinman A, Du Bois J. J. Am. Chem. Soc. 2003; 125: 11510
  • 19 Bercovici DA, Brewer M. J. Am. Chem. Soc. 2012; 134: 9890
  • 20 Hong X, Bercovici DA, Yang ZY, Al-Bataineh N, Srinivasan R, Dhakal RC, Houk KN, Brewer M. J. Am. Chem. Soc. 2015; 137: 9100
    • 21a Brand JP, González DF, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
    • 21b Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 22a Dohi T, Maruyama A, Minamitsuji Y, Takenaga N, Kita Y. Chem. Commun. 2007; 1224
    • 22b Dohi T, Takenage N, Fukushima K, Uchiyama T, Kato D, Motoo S, Fujioka H, Kita Y. Chem. Commun. 2010; 46: 7697

    • For the stoichiometric method, see:
    • 22c Kikugawa Y, Nagashima A, Sakamoto T, Miyazawa E, Shiiya M. J. Org. Chem. 2003; 68: 6739
    • 23a Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
    • 23b Manna S, Antonchick AP. Angew. Chem. Int. Ed. 2014; 53: 7324
    • 23c Manna S, Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2014; 53: 8163
  • 24 Zhu CD, Liang Y, Hong X, Sun HQ, Sun WY, Houk KN, Shi ZZ. J. Am. Chem. Soc. 2015; 137: 7564
    • 25a Groves JT, McClusky GA. J. Am. Chem. Soc. 1976; 98: 859
    • 25b Zou L, Paton RS, Eschenmoser A, Newhouse TR, Baran PS, Houk KN. J. Org. Chem. 2013; 78: 4037