Synthesis 2017; 49(21): 4759-4768
DOI: 10.1055/s-0036-1588431
special topic
© Georg Thieme Verlag Stuttgart · New York

Radical Metal-Free Borylation of Aryl Iodides

Sandra Pinet*
,
Virginie Liautard
,
Mégane Debiais
,
Further Information

Publication History

Received: 21 March 2017

Accepted after revision: 02 May 2017

Publication Date:
29 May 2017 (eFirst)

Published as part of the Special Topic Modern Strategies for Borylation in Synthesis

Abstract

A simple metal-free borylation of aryl iodides mediated by a fluoride sp2–sp3 diboron adduct is described. The reaction conditions are compatible with various functional groups. Electronic effects of substituents do not affect the borylation while steric hindrance does. The reaction proceeds via a radical mechanism in which pyridine serves to stabilize the boryl radicals, generated in situ.

Supporting Information

 
  • References

  • 1 Hall DG. Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Vol. 1 Hall DG. Wiley-VCH; Weinheim: 2005: 1-99
    • 2a Pucheault M. Vaultier M. Marciasini LD. Guerrand H. Patent WO2015082592 (A2), 2015
    • 2b Marciasini L. Cacciuttolo B. Vaultier M. Pucheault M. Org. Lett. 2015; 17: 3532
  • 3 Richard J. Birepinte M. Charbonnier JB. Liautard V. Pinet S. Pucheault M. Synthesis 2017; 49: 736
    • 4a Ratniyom J. Dechnarong N. Yotphan S. Kiatisevi S. Eur. J. Org. Chem. 2014; 1381
    • 4b Labre F. Gimbert Y. Bannwarth P. Olivero S. Duñach E. Chavant PY. Org. Lett. 2014; 16: 2366
    • 4c Chow WK. Yuen OY. Choy PY. So CM. Lau CP. Wong WT. Kwong FY. RSC Adv. 2013; 3: 12518
    • 4d Nagashima Y. Takita R. Yoshida K. Hirano K. Uchiyama M. J Am. Chem. Soc. 2013; 135: 18730
    • 4e Molander GA. Cavalcanti LN. García-García C. J. Org. Chem. 2013; 78: 6427
    • 4f Li P. Fu C. Ma S. Org. Biomol. Chem. 2014; 12: 3604
    • 4g Wang L. Li J. Cui X. Wu Y. Zhu Z. Adv. Synth. Catal. 2010; 352: 2002
    • 4h Fürstner A. Seidel G. Org. Lett. 2002; 4: 541
    • 4i Ma Y. Song C. Jiang W. Xue G. Cannon JF. Wang X. Andrus MB. Org. Lett. 2003; 5: 4635
    • 4j Willis DM. Strongin RM. Tetrahedron Lett. 2000; 41: 8683
    • 5a Guerrand HD. S. Marciasini LD. Jousseaume M. Vaultier M. Pucheault M. Chem. Eur. J. 2014; 20: 5573
    • 5b Marciasini L. Richy N. Vaultier M. Pucheault M. Chem. Commun. 2012; 48: 1553
    • 5c Marciasini LD. Richy N. Vaultier M. Pucheault M. Adv. Synth. Catal. 2013; 355: 1083
    • 5d Marciasini LD. Vaultier M. Pucheault M. Tetrahedron Lett. 2014; 55: 1702
    • 5e Euzenat L. Horhant D. Ribourdouille Y. Duriez C. Alcaraz G. Vaultier M. Chem. Commun. 2003; 2280
    • 6a Guerrand HD. S. Marciasini LD. Gendrineau T. Pascu O. Marre S. Pinet S. Vaultier M. Aymonier C. Pucheault M. Tetrahedron 2014; 70: 6156
    • 6b Guerrand HD. S. Vaultier M. Pinet S. Pucheault M. Adv. Synth. Catal. 2015; 357: 1167
    • 7a Erb W. Albini M. Rouden J. Blanchet J. J. Org. Chem. 2014; 79: 10568
    • 7b Erb W. Hellal A. Albini M. Rouden J. Blanchet J. Chem. Eur. J. 2014; 20: 6608
    • 7c Qiu D. Jin L. Zheng Z. Meng H. Mo F. Wang X. Zhang Y. Wang J. J. Org. Chem. 2013; 78: 1923
    • 7d Mo F. Jiang Y. Qiu D. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2010; 49: 1846
    • 7e Qiu D. Zhang Y. Wang J. Org. Chem. Front. 2014; 1: 422
    • 7f Qiu D. Wang S. Tang S. Meng H. Jin L. Mo F. Zhang Y. Wang J. J. Org. Chem. 2014; 79: 1979
    • 7g Iakobson G. Du J. Slawin AM. Z. Beier P. Beilstein J. Org. Chem. 2015; 11: 1494
    • 7h Qiu D. Meng H. Jin L. Tang S. Wang S. Mo F. Zhang Y. Wang J. Org. Synth. 2014; 91: 106
    • 7i Pucheault MJ. D. Marciasini LD. A. Vaultier M. Patent WO2014009169, 2014
    • 7j Zhao C.-J. Xue D. Jia Z.-H. Wang C. Xiao J. Synlett 2014; 25: 1577
    • 7k Zhu C. Yamane M. Org. Lett. 2012; 14: 4560
    • 8a Yu J. Zhang L. Yan G. Adv. Synth. Catal. 2012; 354: 2625
    • 8b Ahammed S. Nandi S. Kundu D. Ranu BC. Tetrahedron Lett. 2016; 57: 1551
  • 9 Miralles N. Romero RM. Fernandez E. Muniz K. Chem. Commun. 2015; 51: 14068
    • 10a Mfuh AM. Doyle JD. Chhetri B. Arman HD. Larionov OV. J. Am. Chem. Soc. 2016; 138: 2985
    • 10b Mfuh AM. Nguyen VT. Chhetri B. Burch JE. Doyle JD. Nesterov VN. Arman HD. Larionov OV. J. Am. Chem. Soc. 2016; 138: 8408
    • 10c Chen K. Cheung MS. Lin Z. Li P. Org. Chem. Front. 2016; 3: 875
    • 10d Chen K. Zhang S. He P. Li P. Chem. Sci. 2016; 7: 3676
  • 11 Yamamoto E. Izumi K. Horita Y. Ito H. J. Am. Chem. Soc. 2012; 134: 19997
  • 12 Yamamoto E. Ukigai S. Ito H. Chem. Sci. 2015; 6: 2943
  • 13 Zhang J. Wu H.-H. Zhang J. Eur. J. Org. Chem. 2013; 6263
  • 14 Kleeberg C. Dang L. Lin Z. Marder TB. Angew. Chem. Int. Ed. 2009; 48: 5350
  • 15 Zhang L. Jiao L. J. Am. Chem. Soc. 2017; 139: 607
  • 16 Pietsch S. Neeve EC. Apperley DC. Bertermann R. Mo F. Qiu D. Cheung MS. Dang L. Wang J. Radius U. Lin Z. Kleeberg C. Marder TB. Chem. Eur. J. 2015; 21: 7082
  • 17 Cuthbertson J. Gray VJ. Wilden JD. Chem. Commun. 2014; 50: 2575
  • 18 Zhou S. Anderson GM. Mondal B. Doni E. Ironmonger V. Kranz M. Tuttle T. Murphy JA. Chem. Sci. 2014; 5: 476
    • 19a Roman DS. Takahashi Y. Charette AB. Org. Lett. 2011; 13: 3242
    • 19b Shirakawa E. Itoh K.-i. Higashino T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
  • 20 Dewanji A. Murarka S. Curran DP. Studer A. Org. Lett. 2013; 15: 6102
  • 21 Zhang L. Yang H. Jiao L. J. Am. Chem. Soc. 2016; 138: 7151
  • 22 Yanagisawa S. Itami K. ChemCatChem 2011; 3: 827
    • 23a Ajayakumar MR. Hundal G. Mukhopadhyay P. Chem. Commun. 2013; 49: 7684
    • 23b Maity K. Panda DK. Lochner E. Saha S. J. Am. Chem. Soc. 2015; 137: 2812
  • 24 Lu D. Wu C. Li P. Chem. Eur. J. 2014; 20: 1630
  • 25 Dahlen A. Petersson A. Hilmersson G. Org. Biomol. Chem. 2003; 1: 2423
  • 26 Morandi S. Caselli E. Forni A. Bucciarelli M. Torre G. Prati F. Tetrahedron: Asymmetry 2005; 16: 2918
  • 27 Yamamoto T. Morita T. Takagi J. Yamakawa T. Org. Lett. 2011; 13: 5766